Loanable funds

In economics, the loanable funds doctrine is a theory of the market interest rate. According to this approach, the interest rate is determined by the demand for and supply of loanable funds. The term loanable funds includes all forms of credit, such as loans, bonds, or savings deposits.

History

The loanable funds doctrine was formulated in the 1930s by British economist Dennis Robertson[1] and Swedish economist Bertil Ohlin.[2] However, Ohlin attributed its origin to Swedish economist Knut Wicksell[3] and the Stockholm school, which included economists Erik Lindahl and Gunnar Myrdal.[4]

Basic features

The loanable funds doctrine extends the classical theory, which determined the interest rate solely by saving and investment, in that it adds bank credit. The total amount of credit available in an economy can exceed private saving because the bank system is in a position to create credit out of thin air. Hence, the equilibrium (or market) interest rate is not only influenced by the propensities to save and invest but also by the creation or destruction of fiat money and credit.

If the bank system enhances credit, it will at least temporarily diminish the market interest rate below the natural rate. Wicksell had defined the natural rate as that interest rate which is compatible with a stable price level. Credit creation and credit destruction induce changes in the price level and in the level of economic activity. This is referred to as Wicksell's cumulative process.

According to Ohlin (op. cit., p. 222), one cannot say "that the rate of interest equalises planned savings and planned investment, for it obviously does not do that. How, then, is the height of the interest rate determined. The answer is that the rate of interest is simply the price of credit, and that it is therefore governed by the supply of and demand for credit. The banking system – through its ability to give credit – can influence, and to some extent does affect, the interest level."

In formal terms, the loanable funds doctrine determines the market interest rate through the following equilibrium condition:

where denote the price level, real saving, and real investment, respectively, while denotes changes in bank credit. Saving and investment are multiplied by the price level in order to obtain monetary variables, because credit comes also in monetary terms.

In a fiat money system, bank credit creation equals money creation, Therefore, it is also common to represent the loanable funds doctrine as The preceding description holds for closed economies. In open economies, net capital outflows must be added to credit demand.

Comparison with classical and Keynesian approaches

In classical theory, the interest rate i is determined by saving and investment alone: Changes in the quantity of money do not affect the interest rate but only influence the price level (as per the quantity theory of money).

Keynesian liquidity preference theory determines interest and income using two separate equilibrium conditions, namely, the equality of saving and investment, and the equality of money demand and money supply, This is the familiar IS-LM model. Like the classical approach, the IS-LM model contains an equilibrium condition that equates saving and investment.

The loanable funds doctrine, by contrast, does not equate saving and investment, both understood in an ex ante sense, but integrates bank credit creation into this equilibrium condition. According to Ohlin: "There is a credit market ... but there is no such market for savings and no price of savings".[5] An extension of bank credit reduces the interest rate in the same way as an increase in saving.

During the 1930s, and again during the 1950s, the relationship between the loanable funds doctrine and the liquidity preference theory was discussed at length. Some authors considered the two approaches as largely equivalent[6] but this issue is still unresolved.

Ambiguous use

While the scholarly literature uses the term loanable funds doctrine in the sense defined above,[7][8] textbook authors[9] and bloggers sometimes refer colloquially to "loanable funds" in connection with classical interest theory. This ambiguous use disregards the characteristic feature of the loanable funds doctrine, namely, its integration of bank credit into the theory of interest rate determination.

References

  1. ^ Robertson, D. H. (1934). "Industrial Fluctuation and the Natural Rate of Interest". The Economic Journal. 44 (176): 650–656. doi:10.2307/2224848. JSTOR 2224848.
  2. ^ Ohlin, Bertil (1937). "Some Notes on the Stockholm Theory of Savings and Investment II". The Economic Journal. 47 (186): 221–240. doi:10.2307/2225524. JSTOR 2225524.
  3. ^ Wicksell, K. (1898) Geldzins und Güterpreise. Jena: Gustav Fischer.
  4. ^ Ohlin, Bertil (1937). "Some Notes on the Stockholm Theory of Savings and Investment I". The Economic Journal. 47 (185): 53–69. doi:10.2307/2225278. JSTOR 2225278.
  5. ^ Ohlin, Bertil; Robertson, D. H.; Hawtrey, R. G. (1937). "Alternative Theories of the Rate of Interest: Three Rejoinders". The Economic Journal. 47 (187): 424. doi:10.2307/2225356. JSTOR 2225356.
  6. ^ Patinkin, Don (1958). "Liquidity Preference and Loanable Funds: Stock and Flow Analysis". Economica. 25 (100): 300–318. doi:10.2307/2550760. JSTOR 2550760.
  7. ^ Hansen, Alvin H. (1951). "Classical, Loanable Fund, and Keynesian Interest Theories". Quarterly Journal of Economics. 65 (3): 429–432. doi:10.2307/1882223. JSTOR 1882223.
  8. ^ Tsiang, S. C. (1956). "Liquidity Preference and Loanable Funds Theories, Multiplier and Velocity Analysis: A Synthesis". American Economic Review. 46 (4): 539–564. JSTOR 1814282.
  9. ^ Mankiw, N. G. (2013) Macroeconomics. Eighth edition: Macmillan, p. 68.

Read other articles:

Diagram atmosfer menunjukan mesosfer. Mesosfer adalah lapisan udara ketiga, di mana suhu atmosfer akan berkurang dengan pertambahan ketinggian hingga ke lapisan keempat, termosfer. Udara yang terdapat di sini akan mengakibatkan pergeseran berlaku dengan objek yang datang dari angkasa dan menghasilkan suhu yang tinggi. Kebanyakan meteor yang sampai ke bumi biasanya terbakar di lapisan ini. Mesosfer terletak di antara 50 km dan 80–85 km dari permukaan bumi, saat suhunya berkurang da...

 

Nama ini menggunakan cara penamaan Spanyol: nama keluarga pertama atau paternalnya adalah Paredes dan nama keluarga kedua atau maternalnya adalah Quintanilla. Esteban Paredes Esteban Paredes, Colo Colo v Huachipato, Stadion Monumental, Santiago, Chili. 2018Informasi pribadiNama lengkap Esteban Efraín Paredes QuintanillaTanggal lahir 1 Agustus 1980 (umur 43)Tempat lahir Santiago, ChiliTinggi 1,76 m (5 ft 9+1⁄2 in)Posisi bermain PenyerangInformasi klubKlub saat i...

 

Kevin Warwick Kevin Warwick adalah salah satu tokoh penemu kecerdasan buatan khususnya robot. Robot-robot yang dibuatnya memiliki kemampuan untuk belajar sehingga mampu mengadakan interaksi dan adaptasi dengan lingkungan sekitarnya. Warwick menempuh pendidikan di bidang robotika di Institut Teknologi Massachusetts. Ia bekerja sebagai profesor di bidang sibernetika di Universitas Reading.[1] Referensi ^ Black, Jonathan (2015). Wiyati, Nunung, ed. Sejarah Dunia yang Disembunyikan [T...

Peta dunia yang menampilkan zona waktu dari versi 2009r Berikut ini adalah daftar zona waktu di Basis Data Zona Waktu versi 2012c. Daftar ini berasal dari zona, tautan, dan aturan yang dicantumkan di zone.tab dan 7 berkas benua – africa, antarctica, asia, australasia, europe, northamerica, dan southamerica. Empat kolom di zone.tab dibagi menjadi kolom 1–4 (ditandai *) di tabel di bawah. Berkasnya mengandung keterangan berikut: # This file contains a table with the following columns: ...

 

Minato 港区Distrik kota istimewa BenderaLambangLokasi Minato di Prefektur TokyoNegara JepangWilayahKantōPrefektur TōkyōPemerintahan • Wali kotaMasaaki TakeiLuas • Total20,4 km2 (79 sq mi)Populasi (Oktober 1, 2015) • Total243.283 • Kepadatan11,925/km2 (30,89/sq mi)Zona waktuUTC+9 (WSJ)Kode pos105-8511Simbol • PohonCornus florida• BungaHydrangea macrophylla RosaNomor telepon03-3578-2111Alamat1-...

 

Pembasuhan orang Etiopia (atau orang Moor) adalah salah satu Fabel Aesop dan diberi nomor 393 dalam Perry Index.[1] Fabel tersebut hanya ditemukan dalam sumber-sumber Yunani dan ketidakmungkinan dari upaya semacam itu dijadikan kesengajaan pada masa awal. Kisah tersebut beredar di Eropa pada zaman Renaisans yang tercantum dalam buku-buku emblem dan kemudian masuk budaya populer. Cerita tersebut sering kali dipakai untuk membenarkan sikap rasis. Fabel dan pengartiannya Ilustrasi Milo W...

Sebuah bentuk visual dari rekursi yang dikenal dengan Efek Droste Efek Droste (pelafalan dalam bahasa Belanda: [drɔstə]), dikenal juga dalam seni sebagai mise en abyme, adalah sebuah istilah yang berasal dari bahasa Belanda yang mengacu kepada gambar rekursi.[1] Gambar yang bercirikan efek Droste memuat gambar yang sama dengan ukuran yang lebih kecil yang berada di posisi yang realistik. Gambar yang berukuran lebih kecil ini kemudian memuat gambar yang sama dengan ukuran yan...

 

Artikel ini tidak memiliki bagian pembuka yang sesuai dengan standar Wikipedia. Mohon tulis paragraf pembuka yang informatif sehingga pembaca dapat memahami maksud dari Asuransi Parolamas. Contoh paragraf pembuka Asuransi Parolamas adalah .... (2011) (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Sejarah Asuransi Parolamas adalah sebuah asuransi yang berdiri sejak 1964. 1964:PT Asuransi Parolamas didirikan pada tanggal 23 Maret 1964, akta Notaris Julian Nimrod Siregar SH....

 

Dewan Perwakilan Rakyat DaerahKabupaten BimaDewan Perwakilan RakyatKabupaten Bima2019-2024JenisJenisUnikameral Jangka waktu5 tahunSejarahSesi baru dimulai25 September 2019PimpinanKetuaMuhammad Putera Feryandi (Golkar) sejak 18 Oktober 2019[1] Wakil Ketua IMuhammad Aminurlah (PAN) sejak 18 Oktober 2019[1] Wakil Ketua IIYasin (Gerindra) sejak 18 Oktober 2019[1] Wakil Ketua IIIHj. Nurhayati (PPP) sejak 18 Oktober 2019[1] KomposisiAnggota45Partai &a...

Simon Crean Pemimpin OposisiMasa jabatan22 November 2001 – 2 Desember 2003Perdana MenteriJohn HowardWakilJenny MacklinPendahuluKim BeazleyPenggantiMark LathamKetua Partai BuruhMasa jabatan22 November 2001 – 2 Desember 2003WakilJenny MacklinPendahuluKim BeazleyPenggantiMark LathamWakil Ketua Partai BuruhMasa jabatan19 Oktober 1998 – 22 November 2001PemimpinKim BeazleyPendahuluGareth EvansPenggantiJenny MacklinMenteri Pembangunan Regional dan Pemerintahan LokalM...

 

WNBA team based in Arlington, Texas Dallas Wings 2024 Dallas Wings seasonConferenceWesternLeagueWNBAFounded1998; 26 years ago (1998)HistoryDetroit Shock1998–2009Tulsa Shock2010–2015Dallas Wings2016–presentArenaCollege Park CenterLocationUniversity of Texas at ArlingtonArlington, TexasTeam colorsNavy, volt green, blue, cyan[1][2]       Main sponsorAmerican FidelityPresidentGreg BibbHead coachLatricia TrammellAssistant(s)Brandi PooleAp...

 

Province in Eastern Visayas, PhilippinesSamarProvinceProvince of Samar(from top: left to right) San Juanico Bridge, Tarangnan town, Talalora Bay, San Pedro Bay, Rocks of Marabut and Calbayog. FlagSealNickname: The Caving Capital Province of the Philippines[1]Location in the PhilippinesOpenStreetMapCoordinates: 11°50′N 125°00′E / 11.83°N 125°E / 11.83; 125CountryPhilippinesRegionEastern VisayasFoundedJune 19, 1965CapitalCatbaloganLargest cityCalbayo...

Major League Baseball team season 1911 Washington SenatorsLeagueAmerican LeagueBallparkNational ParkCityWashington, D.C.OwnersThomas C. NoyesManagersJimmy McAleer ← 1910 Seasons 1912 → The 1911 Washington Senators won 64 games, lost 90, and finished in seventh place in the American League. They were managed by Jimmy McAleer and played home games at National Park. Regular season Season standings vteAmerican League W L Pct. GB Home Road Philadelphia Athletics 101 50 ...

 

此條目可参照英語維基百科相應條目来扩充。 (2017年8月)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 密西西比州 美國联邦州State of Mississippi 州旗州徽綽號:木蘭之州地图中高亮部分为密西西比州坐标:30°13'N�...

 

American journalist Peter BergenBergen speaking in 2019BornPeter Lampert Bergen[1] (1962-12-12) December 12, 1962 (age 61)Minneapolis, Minnesota, U.S.Occupation(s)Journalist, author, professor, podcaster, producerSpouseTresha MabileChildren2WebsitePeterBergen.com Peter Lampert Bergen (born December 12, 1962) is a British and American-based United States journalist, author, and producer who is CNN's national security analyst, a vice president at New America, a professor at Arizon...

العلاقات الغينية الماليزية غينيا ماليزيا   غينيا   ماليزيا تعديل مصدري - تعديل   العلاقات الغينية الماليزية هي العلاقات الثنائية التي تجمع بين غينيا وماليزيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة غين�...

 

Stage magicians and authors on occultism Julius and Agnes ZancigOccupationMentalists Julius and Agnes Zancig were stage magicians and authors on occultism who performed a spectacularly successful two-person mentalism act during the late 19th and early 20th centuries. Julius Zancig (1857–1929) – born Julius Jörgensen in Copenhagen, Denmark – and his wife Agnes Claussen Jörgensen (c.1850s −1916) – also born in Copenhagen, and known as Agnes Zancig – were the originators of the rou...

 

International Hindu organization World Vaisnava Association —Visva Vaisnava Raj SabhaAbbreviationWVA–VVRSEstablished18 November 1994 (29 years ago) (1994-11-18)[1][2]Founders28 sannyasis and members of 19 missions[1][2]Founded atVrindavan, IndiaTypeReligious organizationPurposeMediationEducationalMissionaryReligious studiesSpiritualityHeadquartersVrindavan, India[1]Area served WorldwideOfficial languages EnglishPresidentSrila Bhakti B....

Pour les articles homonymes, voir Jeffrey Williams et Williams. Cet article est une ébauche concernant un astronaute américain. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Jeffrey Williams Photographie de Jeffrey Williams dans sa tenue d'astronaute. Nationalité  Américain Sélection Groupe 16 de la NASA, 1996 Naissance 18 janvier 1958 (66 ans)Superior, Wisconsin Grade Colonel (US Army) Durée c...

 

American television news anchor (1932-2014) Bill BondsBonds in 1985BornWilliam Duane Bonds(1932-02-23)February 23, 1932Detroit, Michigan, U.S.DiedDecember 13, 2014(2014-12-13) (aged 82)Bloomfield Hills, Michigan, U.S.EducationUniversity of DetroitOccupationsTelevision news anchorjournalistSpouse Joanne Bonds ​ ​(m. 1962; div. 1986)​Children4 William Duane Bonds (February 23, 1932 – December 13, 2014)[1] was an American television ...