Kummer theory

In abstract algebra and number theory, Kummer theory provides a description of certain types of field extensions involving the adjunction of nth roots of elements of the base field. The theory was originally developed by Ernst Eduard Kummer around the 1840s in his pioneering work on Fermat's Last Theorem. The main statements do not depend on the nature of the field – apart from its characteristic, which should not divide the integer n – and therefore belong to abstract algebra. The theory of cyclic extensions of the field K when the characteristic of K does divide n is called Artin–Schreier theory.

Kummer theory is basic, for example, in class field theory and in general in understanding abelian extensions; it says that in the presence of enough roots of unity, cyclic extensions can be understood in terms of extracting roots. The main burden in class field theory is to dispense with extra roots of unity ('descending' back to smaller fields); which is something much more serious.

Kummer extensions

A Kummer extension is a field extension L/K, where for some given integer n > 1 we have

For example, when n = 2, the first condition is always true if K has characteristic ≠ 2. The Kummer extensions in this case include quadratic extensions where a in K is a non-square element. By the usual solution of quadratic equations, any extension of degree 2 of K has this form. The Kummer extensions in this case also include biquadratic extensions and more general multiquadratic extensions. When K has characteristic 2, there are no such Kummer extensions.

Taking n = 3, there are no degree 3 Kummer extensions of the rational number field Q, since for three cube roots of 1 complex numbers are required. If one takes L to be the splitting field of X3a over Q, where a is not a cube in the rational numbers, then L contains a subfield K with three cube roots of 1; that is because if α and β are roots of the cubic polynomial, we shall have (α/β)3 =1 and the cubic is a separable polynomial. Then L/K is a Kummer extension.

More generally, it is true that when K contains n distinct nth roots of unity, which implies that the characteristic of K doesn't divide n, then adjoining to K the nth root of any element a of K creates a Kummer extension (of degree m, for some m dividing n). As the splitting field of the polynomial Xna, the Kummer extension is necessarily Galois, with Galois group that is cyclic of order m. It is easy to track the Galois action via the root of unity in front of

Kummer theory provides converse statements. When K contains n distinct nth roots of unity, it states that any abelian extension of K of exponent dividing n is formed by extraction of roots of elements of K. Further, if K× denotes the multiplicative group of non-zero elements of K, abelian extensions of K of exponent n correspond bijectively with subgroups of

that is, elements of K× modulo nth powers. The correspondence can be described explicitly as follows. Given a subgroup

the corresponding extension is given by

where

In fact it suffices to adjoin nth root of one representative of each element of any set of generators of the group Δ. Conversely, if L is a Kummer extension of K, then Δ is recovered by the rule

In this case there is an isomorphism

given by

where α is any nth root of a in L. Here denotes the multiplicative group of nth roots of unity (which belong to K) and is the group of continuous homomorphisms from equipped with Krull topology to with discrete topology (with group operation given by pointwise multiplication). This group (with discrete topology) can also be viewed as Pontryagin dual of , assuming we regard as a subgroup of circle group. If the extension L/K is finite, then is a finite discrete group and we have

however the last isomorphism isn't natural.

Recovering a1/n from a primitive element

For prime, let be a field containing and a degree Galois extension. Note the Galois group is cyclic, generated by . Let

Then

Since and

,

where the sign is if is odd and if .

When is an abelian extension of degree square-free such that , apply the same argument to the subfields Galois of degree to obtain

where

.

The Kummer Map

One of the main tools in Kummer theory is the Kummer map. Let be a positive integer and let be a field, not necessarily containing the th roots of unity. Letting denote the algebraic closure of , there is a short exact sequence

Choosing an extension and taking -cohomology one obtains the sequence

By Hilbert's Theorem 90 , and hence we get an isomorphism . This is the Kummer map. A version of this map also exists when all are considered simultaneously. Namely, since , taking the direct limit over yields an isomorphism

,

where tors denotes the torsion subgroup of roots of unity.

For Elliptic Curves

Kummer theory is often used in the context of elliptic curves. Let be an elliptic curve. There is a short exact sequence

,

where the multiplication by map is surjective since is divisible. Choosing an algebraic extension and taking cohomology, we obtain the Kummer sequence for :

.

The computation of the weak Mordell-Weil group is a key part of the proof of the Mordell-Weil theorem. The failure of to vanish adds a key complexity to the theory.

Generalizations

Suppose that G is a profinite group acting on a module A with a surjective homomorphism π from the G-module A to itself. Suppose also that G acts trivially on the kernel C of π and that the first cohomology group H1(G,A) is trivial. Then the exact sequence of group cohomology shows that there is an isomorphism between AG/π(AG) and Hom(G,C).

Kummer theory is the special case of this when A is the multiplicative group of the separable closure of a field k, G is the Galois group, π is the nth power map, and C the group of nth roots of unity. Artin–Schreier theory is the special case when A is the additive group of the separable closure of a field k of positive characteristic p, G is the Galois group, π is the Frobenius map minus the identity, and C the finite field of order p. Taking A to be a ring of truncated Witt vectors gives Witt's generalization of Artin–Schreier theory to extensions of exponent dividing pn.

See also

References

Read other articles:

Paul HoganAMHogan di Konser Amal Kerajaan pada tahun 1980Lahir8 Oktober 1939 (umur 84)Sydney, New South Wales, AustraliaPekerjaanAktorproduserpenulispelawakpembawa acara televisiTahun aktif1971–sekarangSuami/istriNoelene Edwards(m. 1958; div. 1981)(m. 1982; div. 1989)[1] Linda Kozlowski ​ ​(m. 1990; div. 2014)​[2]Anak6 Paul Hogan AM (lahir 8 Oktober 1939) adalah seorang aktor, pelawak, produser film, pembawa acara te...

 

Logo della Billboard Hot 100 La Billboard Hot 100 è la principale classifica musicale dell'industria discografica statunitense, pubblicata settimanalmente dalla rivista specializzata Billboard. La classifica elenca le canzoni di maggior successo: è basata sulle trasmissioni radio, sullo streaming in rete e sulla vendita dei dischi, insieme alle visualizzazioni del noto sito di video sharing YouTube, ma tenendo in considerazione solo gli Stati Uniti d'America. Viene stilata con criteri che s...

 

Mary Todd Lincoln Ibu Negara Amerika SerikatMasa jabatan4 Maret 1861 – 15 April 1865PresidenAbraham Lincoln PendahuluHarriet LanePenggantiEliza McCardle Johnson Informasi pribadiLahirMary Ann Todd(1818-12-13)13 Desember 1818Lexington, Kentucky, Amerika SerikatMeninggal16 Juli 1882(1882-07-16) (umur 63)Springfield, Illinois, Amerika SerikatSebab kematianStrokeMakamOak Ridge CemeterySpringfield, IllinoisKebangsaanAmerika SerikatSuami/istriAbraham Lincoln (m. 1842 - w. 1865)...

Lambang Loiret Loiret ialah sebuah departemen di utara-tengah Prancis yang dinamai menurut Sungai Loiret. Sejarah Loiret adalah salah satu dari 83 departemen asli yang diciptakan selama Revolusi Prancis pada 4 Maret 1790. Diciptakan dari bekas provinsi Orléanais. Geografi Loiret terletak di bagian region Centre (Val de Loire) dan dikelilingi oleh departemen Seine dan Marne, Yonne, Nievre, Cher, Loir dan Cher, serta Eure dan Loir. Pariwisata Orléans ialah tujuan wisata terkenal, dengan kated...

 

Sampul Hellados periegesis edisi bahasa Latin. Pausanias (Yunani: Παυσανίας) adalah seorang geografer Yunani pada abad ke-2 M. Pausanias hidup pada masa kekuasaan kaisar Hadrian, Antonius Pius dan Marcus Aurelius. Dia terkenal atas karyanya Helládos periḗgēsis (Deskripsi Yunani), sepuluh buku yang menjelaskan Yunani kuno dari pengamatan langsung dan merupakan penghubung yang penting antara sastra klasik dan arkeologi modern. Biografi Pausanias kemungkinan berasal dari Lydia; dia ...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Daftar Bupati Magetan – berita · surat kabar · buku · cendekiawan · JSTOR Bupati MagetanLambangPetahanaDr. Drs. Suprawoto, SH, M.Sisejak 2018Masa jabatan5 tahunDibentuk1675; 348 tahun lalu (167...

HalloumiNegara asalCyprusSumber susuKambing atau DombaDipasteurisasiYa untuk komersial, tidak secara tradisionalTeksturSemi-lunak, tapi menjadi keras setelah dimatangkanSertifikasiTidak Ada Halloumi adalah keju dari negara Siprus yang diasamkan dan dibuat dari susu domba atau kambing atau campuran dari keduanya.[1] Susu sapi juga dapat digunakan untuk membuat halloumi.[1] Rennet tidak digunakan dalam pembuatan keju ini.[1] Halloumi memiliki tekstur yang berlapis dan ra...

 

Adult hits radio station in Raleigh, North Carolina, United States WBBBRaleigh, North CarolinaBroadcast areaRaleigh/DurhamResearch TriangleFrequency96.1 MHzBranding96.1 BBBProgrammingFormatAdult hitsOwnershipOwnerCurtis Media Group(Carolina Media Group, Inc.)Sister stationsWKIX-FM, WKIX, WKJO, WKXU, WPLW-FM, WPTF, WQDR, WQDR-FMHistoryFirst air date1949 (as WNAO-FM)Former call signsWNAO-FM (1949–1955)WKIX-FM (1955–1972)WYYD (1972–1985)[1]WYLT (1985–1993)WKIX-FM (1994–1998) ...

 

Buckley-class destroyer escort History United States NameUSS Spangenberg NamesakeKenneth J. Spangenberg Ordered1942 BuilderPhiladelphia Navy Yard, Philadelphia, Pennsylvania Laid down5 April 1943 Launched3 July 1943 Commissioned15 March 1944 Decommissioned18 October 1947 Reclassified DER-223, March 1949 DE-223, 1 December 1954 Stricken1 November 1965 FateSold for scrap, 3 October 1966 General characteristics Class and typeBuckley-class destroyer escort Displacement 1,400 long tons (1,422 ...

Yang Utama dan BerbahagiaPierbattista PizzaballaO.F.M.Kardinal, Patriark Latin YerusalemPierbattista Pizzaballa pada tahun 2023.GerejaGereja KatolikKeuskupan agungYerusalemTakhtaYerusalemPenunjukan24 Oktober 2020Awal masa jabatan6 November 2020PendahuluFouad Twal (2016)Diri sendiri (sebagai administrator apostolik)Jabatan lainPrior Besar Ordo Makam KudusImamatTahbisan imam15 September 1990oleh Giacomo BiffiTahbisan uskup10 September 2016oleh Leonardo SandriPeringkatPatriark-Uskup Ag...

 

Man on FireTheatrical release posterSutradaraTony ScottProduserLucas FosterArnon MilchanTony ScottSkenarioBrian HelgelandBerdasarkanMan on Fireoleh A. J. QuinnellPemeranDenzel WashingtonDakota FanningChristopher WalkenGiancarlo GianniniRadha MitchellMarc AnthonyRachel TicotinMickey RourkePenata musikHarry Gregson-WilliamsLisa GerrardSinematograferPaul CameronPenyuntingChristian WagnerPerusahaanproduksiRegency EnterprisesScott Free ProductionsDistributor20th Century FoxTanggal rilis 23 A...

 

1973 film by Richard L. Bare Wicked, WickedDirected byRichard L. BareWritten byRichard L. BareProduced byRichard L. BareStarring David Bailey Tiffany Bolling Randolph Roberts Scott Brady Edd Byrnes Madeleine Sherwood Arthur O'Connell Indira Danks CinematographyFrederick GatelyEdited byJohn F. SchreyerMusic byPhilip SpringerDistributed byMGMRelease date June 13, 1973 (1973-06-13) Running time95 minutesCountryUnited StatesLanguageEnglish Wicked, Wicked is a 1973 horror-thriller f...

1900年美國總統選舉 ← 1896 1900年11月6日 1904 → 447張選舉人票獲勝需224張選舉人票投票率73.2%[1] ▼ 6.1 %   获提名人 威廉·麥金利 威廉·詹寧斯·布賴恩 政党 共和黨 民主党 家鄉州 俄亥俄州 內布拉斯加州 竞选搭档 西奧多·羅斯福 阿德萊·史蒂文森一世 选举人票 292 155 胜出州/省 28 17 民選得票 7,228,864 6,370,932 得票率 51.6% 45.5% 總統選舉結果地圖,紅色代表...

 

River in West Bengal, IndiaBansloi RiverBansloi River in AmraparaLocationCountryIndiaStateJharkhand, West BengalPhysical characteristicsSourceBans Hill • locationSahebganj district, Santhal Parganas MouthBhagirathi The Bansloi River is a tributary of the Bhagirathi. Geography The Bansloi River originates on Bans Hill in Sahebganj district of Jharkhand,[1] flows through Pakur district of Jharkhand[2] and Birbhum and Murshidabad districts of West Bengal bef...

 

Bobby Doerr Doerr in una figurina del 1950 Nazionalità  Stati Uniti Baseball Ruolo Seconda base Termine carriera 1951 Hall of fame National Baseball Hall of Fame (1986) Record Batte sinistro Tira destro Debutto in MLB 20 aprile 1937 con i Boston Red Sox Media battuta (AVG) .288 Fuoricampo (HR) 223 Punti battuti a casa (RBI) 1247 CarrieraSquadre di club 1937–1944,1946-1951 Boston Red SoxPalmarès Trofeo Vittorie All-Star 9 Vedi maggiori dettagli   Modifica dati su Wikid...

Album by Thomas Dolby This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Astronauts & Heretics – news · newspapers · books · scholar · JSTOR (April 2013) (Learn how and when to remove this message) Astronauts & HereticsStudio album by Thomas DolbyReleased27 July 1992Genre New wave zydeco Length43:16...

 

Bridge between North Korea and South Korea, formerly used for prisoner exchanges 37°57′22.05″N 126°40′14.15″E / 37.9561250°N 126.6705972°E / 37.9561250; 126.6705972 Bridge of No ReturnKorean nameHangul돌아올 수 없는 다리Revised RomanizationDoraol su eomneun dariMcCune–ReischauerToraol su ŏmnŭn tari Located in the Joint Security Area (JSA), the so-called Bridge of No Return crosses the Military Demarcation Line (MDL) between North Korea and South...

 

العلاقات المالديفية الهندوراسية جزر المالديف هندوراس   المالديف   هندوراس تعديل مصدري - تعديل   العلاقات المالديفية الهندوراسية هي العلاقات الثنائية التي تجمع بين المالديف وهندوراس.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية لل...

UFC mixed martial arts event in 2015 UFC Fight Night: Henderson vs. MasvidalThe poster for UFC Fight Night: Henderson vs. MasvidalInformationPromotionUltimate Fighting ChampionshipDateNovember 28, 2015 (2015-11-28)VenueOlympic Gymnastics ArenaCitySeoul, South KoreaAttendance12,156[1]Event chronology The Ultimate Fighter Latin America 2 Finale: Magny vs. Gastelum UFC Fight Night: Henderson vs. Masvidal UFC Fight Night: Namajunas vs. VanZant UFC Fight Night: Henderson vs....

 

Scottish actor Ian CharlesonCharleson as Eric Liddell in Chariots of FireBorn(1949-08-11)11 August 1949Edinburgh, ScotlandDied6 January 1990(1990-01-06) (aged 40)London, EnglandResting placePortobello Cemetery, Edinburgh, ScotlandEducationUniversity of Edinburgh (MA)London Academy of Music and Dramatic ArtOccupation(s)Actor, singerYears active1972–1989 Ian Charleson (11 August 1949 – 6 January 1990) was a Scottish stage and film actor. He is best known internationally for his st...