Jon Micah Sumrall
|
Read other articles:
Hiroshi Amano Hiroshi Amano (lahir 11 September 1960) adalah seorang ahli Fisika di Universitas Nagoya warga negara Jepang yang mendapat Penghargaan Nobel Fisika tahun 2014 bersama Isamu Akasaki dan Shuji Nakamura untuk hasil penemuan mereka dalam menciptakan sinar LED (Light-Emitting Diodes) warna biru yang efisien sebagai dasar dan sumber dari cahaya putih yang sangat terang dan hemat energi. Pranala luar Informasi Pemenang Nobel Fisika 2014 Wikimedia Commons memiliki media mengenai Hiroshi...
Perlis ڨرليس (Jawi) பெர்லிஸ் (Tamil)Negara bagianPerlis Indera Kayangan BenderaLambang kebesaranHimne daerah: Amin, Amin, ya Rabaljalil Perlis di MalaysiaIbu kotaKangarIbu kota kerajaanArauPemerintahan • SultanSirajuddin • Menteri BesarMohd Shukri Ramli (PN-PAS)Luas[1] • Total819 km2 (316 sq mi)Populasi (2020)[2] • Total284,885 • Kepadatan350/km2 (900/s...
Beberapa Tamtama berpose bersama dua perwira Tamtama= tentara ahli mata-mata (Inggris: privatecode: en is deprecated ) adalah golongan pangkat ketentaraan dan kepolisian yang paling rendah, mulai dari Prajurit Dua/Kelasi Dua/Bhayangkara Dua sampai Kopral Kepala/Ajun Brigadir Polisi.[1] Pangkat ini biasanya merujuk kepada para anggota Prajurit garis paling depan dalam kesatuan militer dan sebagai unsur inti dari sebuah pasukan tempur. Pembagian tamtama di TNI Pangkat terendah Tamtama d...
FaithSutradaraJames KirkwoodDitulis olehJames KirkwoodPemeranMary Miles MinterSinematograferCarl WidenDistributorMutual FilmTanggal rilis 13 Maret 1916 (1916-03-13) (United States) NegaraUnited StatesBahasaAntarjudul Inggris Faith (juga dikenal dengan judul The Virtuous Outcast) adalah film bisu Amerika Serikat produksi tahun 1916 bergenre drama yang disutradarai serta ditulis skenarionya oleh James Kirkwood. Film ini, sampai sekarang masih bertahan di bawah pemeliharaan George Eastm...
AKT beralih ke halaman ini. Untuk kegunaan lain, lihat AKT (disambiguasi). AKT1Representasi pita dari struktur kristal kompleks Akt-1-inhibitor.[1]PengidentifikasiSimbolAKT1Gen NCBI207HGNC391OMIM164730RefSeqNM_005163UniProtP31749Data lainLokusChr. 14 q32.32-32.33PencarianStrukturSwiss-modelDomainInterPro AKT2Struktur kristal kompleks Akt-2-inhibitor.[2]PengidentifikasiSimbolAKT2Gen NCBI208HGNC392OMIM164731RefSeqNM_001626UniProtP31751Data lainLokusChr. 19 q13.1-13.2PencarianStr...
Piala Raja Spanyol 1903Negara SpanyolJumlah peserta3JuaraAthletic Bilbao(gelar ke-1)Tempat keduaMadrid FCJumlah pertandingan3Jumlah gol14 (4.67 per pertandingan)Pencetak gol terbanyak Juan Astorquia Armando Giralt Alejandro de la Sota(2 gol)1904 → Piala Raja Spanyol 1903 adalah edisi pertama dari penyelenggaraan Piala Raja Spanyol, turnamen sepak bola di Spanyol dengan sistem piala. Edisi ini dimenangkan oleh Athletic Bilbao setelah mengalahkan Madrid FC pada pertandingan final dengan ...
Gaza Sanjakسنجق غزةsanjak of the Ottoman Empire1516–1916 Coat of arms CapitalGazaHistory • Ottoman Empire captured Syria 1516• Sykes–Picot Agreement 16 May 1916 1916 Gaza Sanjak (Arabic: سنجق غزة), known in Arabic as Bilād Ghazza (the Land of Gaza), was a sanjak of the Damascus Eyalet, Ottoman Empire centered in Gaza, northwards up to the Nahr al-‘Awja/the Yarkon River. In the 16th century it was divided into nawahi (singular: nahiya; third-level subdiv...
German mathematician (1862–1943) Hilbert redirects here. For other uses, see Hilbert (disambiguation). David HilbertHilbert in 1912Born(1862-01-23)23 January 1862Königsberg or Wehlau, Kingdom of PrussiaDied14 February 1943(1943-02-14) (aged 81)Göttingen, Nazi GermanyEducationUniversity of Königsberg (PhD)Known forHilbert's basis theoremHilbert's NullstellensatzHilbert's axiomsHilbert's problemsHilbert's programEinstein–Hilbert actionHilbert spaceHilbert systemEpsilon calculus...
Australian ski field and tourist destination This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Corin Forest – news · newspapers · books · scholar · JSTOR (February 2018) (Learn how and when to remove this message) Corin ForestLocationAustralian Capital Territory, AustraliaNearest major cityCanberraCoordinates3...
Title character of Uncle Tom's Cabin For other uses, see Uncle Tom (disambiguation). Fictional character Uncle TomUncle Tom's Cabin characterDetail of an illustration from the first book edition of Uncle Tom's Cabin, depicting Uncle Tom as a young African-American manCreated byHarriet Beecher StoweIn-universe informationGenderMaleReligionChristianNationalityAmerican Part of a series onSlavery Contemporary Child labour Child soldiers Conscription Debt Forced marriage Bride buying Child marriag...
У этого термина существуют и другие значения, см. Европа (значения). Европа Спутник Изображение Европы в естественных цветах, снятое JunoCam КА «Юнона» Другие названия Юпитер II Открытие[1] Первооткрыватель Галилео Галилей Место открытия Падуанский университет, Италия...
Tepe NarenjHead of a king or bodhisattva, stucco, Tepe Narenj, 3rd-6th century CE.Shown within AfghanistanShow map of AfghanistanTepe Narenj (Hindu-Kush)Show map of Hindu-KushTepe Narenj (South Asia)Show map of South AsiaTepe Narenj (West and Central Asia)Show map of West and Central AsiaCoordinates34°29′31″N 69°10′55″E / 34.491958°N 69.181894°E / 34.491958; 69.181894TypeMonastery Tepe Narenj, also Tappe-e Narenj, is the archaeological site for the remains ...
坐标:43°11′38″N 71°34′21″W / 43.1938516°N 71.5723953°W / 43.1938516; -71.5723953 此條目需要补充更多来源。 (2017年5月21日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:新罕布什尔州 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2019) نظام شبكة فوجيمعلومات عامةالبداية 1969 الاسم المختصر FNS (بالإنجليزية) أعمال بارزة FNS Music Festival (en) (1974 – ) عدد الأ...
This article is part of a series within thePolitics of the United Kingdom on thePolitics of Northern Ireland Executive Executive Committee First Minister Michelle O'Neill deputya First Minister Emma Little-Pengelly Civil Service Government departments a Lowercase d per here. Assembly Speaker Edwin Poots MLA Acts Committees Statutory rules Members (MLA) Law Supreme Court (UK) Courts of Northern Ireland Northern Ireland in the UK His Majesty's Government Northern Ireland Office Secretary...
Israeli lawyer and far-right politician (born 1976) Itamar Ben-Gvirאִיתָמָר בֶּן גְּבִירBen-Gvir in 2022Minister of National SecurityIncumbentAssumed office 29 December 2022Faction represented in the Knesset2021–2022Religious Zionist Party2022–Otzma Yehudit Personal detailsBorn (1976-05-06) 6 May 1976 (age 48)Mevaseret Zion, IsraelPolitical partyOtzma YehuditSpouseAyala NimrodiChildren6[1]EducationOno Academic College Itamar Ben-Gvir (Hebrew: אִיתָ...
Former shopping mall in Mountain View, California Mayfield MallLocationMountain View and Palo Alto, California, United StatesAddress100 Mayfield AvenueOpening dateOctober 5, 1966 (1966-10-05)Closing dateJanuary 1984 (1984-01)DeveloperAlbert A. Hoover and Associates; Hare, Brewer and Kelley, Inc.[1]No. of stores and services24No. of anchor tenants1Total retail floor area500,000 sq ft (46,000 m2)[1]No. of floors1 Mayfield Mall was a shoppi...
Special case of the polylogarithm Li2 redirects here. For the molecule with formula Li2, see dilithium. See also: polylogarithm § Dilogarithm The dilogarithm along the real axis In mathematics, the dilogarithm (or Spence's function), denoted as Li2(z), is a particular case of the polylogarithm. Two related special functions are referred to as Spence's function, the dilogarithm itself: Li 2 ( z ) = − ∫ 0 z ln ( 1 − u ) u d u , z ∈ C {\d...
1906 U.S. law allowing the president to create national monuments from federal lands Antiquities ActLong titleAn act for the preservation of American antiquities.Enacted bythe 59th United States CongressEffectiveJune 8, 1906CitationsPublic lawPub. L.Tooltip Public Law (United States) 59–209Statutes at Large34 Stat. 225CodificationU.S.C. sections created54 U.S.C. ch. 3203 §§ 320301 to 320303Legislative historyIntroduced in the House as H.R. 11016 by John F. Lacey...
Alcance de acreditación institucional AACSB-EQUIS-AMBA. Número de escuelas de negocio acreditadas con la Triple Corona (AACSB-AMBA-EQUIS) en todo el mundo, a fecha de junio de 2023 El concepto Triple Corona es utilizado en el ámbito de la administración de empresas cuando una escuela de negocios es acreditada por las tres asociaciones internacionales de acreditación más influyentes: Association to Advance Collegiate Schools of Business (AACSB) - en Florida Asociación de MBA (AMBA) - en...