Hollerbach was born in Marktheidenfeld, Germany to Hungarian refugees who met and married in a displacement camp. He and his family lived in a priest's attic in Germany for five years before emigrating to Detroit as refugees.[1]
He received his BS in chemistry in 1968 from the University of Michigan but was interested in the growing computer industry and spent an extra year taking computer science courses to receive an MS in mathematics.[1] Following graduation, he worked at IBM as a chemist but took courses in artificial intelligence and computer science as part of an education program with Syracuse University. He then applied to the Massachusetts Institute of Technology, where he worked with Patrick Winston in the Artificial Intelligence Laboratory on modeling solid objects and received his SM in computer vision in 1975. He continued at MIT in the Department of Brain and Cognitive Science PhD program to study the acquisition of fine motor skills for use in robotics. He obtained special permission to have David Marr as his thesis advisor because Marr was a research scientist and not yet a faculty member at the time.[1] As a result, Hollerbach was technically Marr's first student, although Shimon Ullman was the first student to graduate under him. Hollerbach received his PhD from MIT in 1978.
Career
Following his PhD, Hollerbach continued at MIT as a research scientist in the Department of Brain and Cognitive Sciences and the Artificial Intelligence Laboratory to work on theories of human movement and control and adapting these theories to robotics, and officially joined the faculty in 1982.
Year of the Robot
In 1981 Hollerbach co-founded the Year of the Robot program at the MIT Artificial Intelligence Laboratory funded by the System Development Corporation and the Office of Naval Research with the goal of jump-starting serious research in robotics. During the 1970s robotics research was not considered a separate respectable scientific endeavor and was heavily oriented toward industrial robotics with limited vision in potential capabilities. The program aimed to rectify this by accelerating robotics research at MIT over a five-year period by supporting writing of a sourcebook on robotic manipulation, starting an annual high-level international academic conference and research journal, outlining an educational program, and building a dexterous and controllable robotic hand.[2] In 1982, Hollerbach co-produced a robot motion sourcebook with J. Michael Brady, Matthew T. Mason, Tomas Lozano-Perez, and Timothy Johnson. The book contained sections on dynamics, trajectory planning, compliance and force control, feedback control, and spatial planning; each section had a substantial introduction that served as a tutorial in addition to research papers by 19 top robotics researchers, including Marc Raibert, Robin Popplestone, and Pat Ambler. An updated version of the sourcebook was published in 1989 edited by J. Michael Brady. In 1983, Hollerbach helped start the International Journal of Robotics Research and the International Symposium of Robotics Research.[1]
Hierarchical Shape Descriptions of Objects by Selection and Modification of Prototypes (Scientiæ Magister thesis), The Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge MA, AI-TR-346 of 1976. [The thesis offers (first) a theory of block-world descriptions focused on protrusions and indentations, and (second) a theory of generalized cylinder descriptions specialized to Greek vases.]
^Hollerbach, John (16 September 2010). "The Year(s) of the Robot". Mike Brady Research Symposium. Retrieved 18 March 2017.
^Hollerbach, John (April 1982). "Workshop on the Design and Control of Dexterous Hands". AI Memo No. 661.
^Jacobsen, S.; Iversen, E.; Knutti, D.; Johnson, R.; Biggers, K. (7 April 1986). "Design of the Utah/M.I.T. Dextrous Hand". Proceedings. 1986 IEEE International Conference on Robotics and Automation. Vol. 3. pp. 1520–1532. doi:10.1109/ROBOT.1986.1087395. S2CID32543001.
^Perlin, Kenneth; Demmel, James W.; Wright, Paul K. (January 1989). "Simulation software for the Utah/MIT dextrous hand". Robotics and Computer-Integrated Manufacturing. 5 (4): 281–292. doi:10.1016/0736-5845(89)90002-1.