A continuum robot is a type of robot that is characterised by infinite degrees of freedom and number of joints.[citation needed] These characteristics allow continuum manipulators to adjust and modify their shape at any point along their length, granting them the possibility to work in confined spaces and complex environments where standard rigid-link robots cannot operate.[1] In particular, we can define a continuum robot as an actuatable structure whose constitutive material forms curves with continuous tangent vectors.[2] This is a fundamental definition that allows to distinguish between continuum robots and snake-arm robots or hyper-redundant manipulators: the presence of rigid links and joints allows them to only approximately perform curves with continuous tangent vectors.
The design of continuum robots is bioinspired, as the intent is to resemble biological trunks, snakes and tentacles. Several concepts of continuum robots have been commercialised and can be found in many different domains of application, ranging from the medical field to undersea exploration.[citation needed]
Classification
Continuum robots can be categorised according to two main criteria: structure and actuation.[2]
Structure
The main characteristic of the design of continuum robots is the presence of a continuously curving core structure, named backbone, whose shape can be actuated. The backbone must also be compliant, meaning that the backbone yields smoothly to external loads.[3]
According to the design principles chosen for the continuum manipulator, we can distinguish between:
single-backbone: these continuum manipulators have one central elastic backbone through which actuation/transmission elements can run.
multi-backbone: the structure of these continuum robots has two or more elastic elements (either rods or tubes) parallel to each other and constrained with one another in some way.[4]
concentric-tube: the backbone is made of concentric tubes that are free to rotate and translate between each other, depending on the actuation happening at the base of the robot.[3]
Actuation
The actuation strategy of continuum manipulators can be distinguished between extrinsic or intrinsic actuation, depending on where the actuation happens:
extrinsic actuation: the actuation happens outside the main structure of the robot and the forces are transmitted via mechanical transmission; among these techniques, there are cable/tendon driven actuators and multi-backbone strategies.
intrinsic actuation: the actuation mechanism operates within the structure of the robot; these strategies include pneumatic[5] or hydraulic chambers[6] and the shape memory effect.[7]
Advantages
The particular design of continuum robots offers several advantages with respect to rigid-link robots. First of all, as already said, continuum robots can more easily operate in environments that require a high level of dexterity, adaptability and flexibility. Moreover, the simplicity of their structure makes continuum robots more prone to miniaturisation. The rise of continuum robots has also paved the way for the development of soft continuum manipulators. These continuum manipulators are made of highly compliant materials that are flexible and can adapt and deform according to the surrounding environment. The "softness" of their material grants higher safety in human-robot interactions.[8]
Disadvantages
The particular design of continuum robots also introduces many challenges. To properly and safely use continuum robots, it is crucial to have an accurate force and shape sensing system. Traditionally, this is done using cameras that are not suitable for some of the applications of continuum robots (e.g. minimally invasive surgery), or using electromagnetic sensors that are however disturbed by the presence of magnetic objects in the environment. To solve this issue, in the last years fiber-Bragg-grating sensors have been proposed as a possible alternative and have shown promising results.[9][10] It is also necessary to notice that while the mechanical properties of rigid-link robots are fully understood, the comprehension of the behaviour and properties of continuum robots is still subject of study and debate.[1] This poses new challenges in developing accurate models and control algorithms for this kind of robots.
Modelling
Creating an accurate model that can predict the shape of a continuum robot allows to properly control the robot's shape.[11] There are three main approaches to model continuum robots:
Cosserat rod theory: this approach is an exact solution to the static of a continuum robot, as it is not subject to any assumption. It solves a set of equilibrium equations between position, orientation, internal force and torque of the robot. This method requires to be solved numerically and it is therefore computationally expensive, due to its high complexity.[11][12]
Constant curvature: this technique assumes the backbone to be made of a series of mutually tangent sections that can be approximated as arcs with constant curvature. This approach is also known as piecewise constant-curvature. This assumption can be applied to the entire segment of the backbone or to its subsegments.[13] This model has shown promising results, however it must be taken into account that the segment/subsegments of the backbone may not comply to the constant curvature assumption and therefore the model's behaviour may not entirely reflect the behaviour of the robot.
Rigid-link model: this approach is based on the assumption that the continuum robot can be divided in small segments with rigid links. This is a strong assumption, since if the number of segments is too low, the model hardly behaves like the continuum robot, while increasing the number of segments means increasing the number of variables, and thus complexity. Despite this limitation, rigid-link modelling allows the use of the standard control techniques that are well known for rigid-link robots. It has been proven that this model can be coupled with shape and force sensing to mitigate its inaccuracy and can lead to promising results.[14]
Sensing
To develop accurate control algorithms, it is necessary to complement the presented modelling techniques with real time shape sensing. The following options are currently available:
Electromagnetic (EM) sensing: shape is reconstructed thanks to the mutual induction between a magnetic field generator and a magnetic field sensor.[15] The most common external EM tracking system is the commercially available NDI Aurora: small sensors can be placed on the robot and their position is tracked in an external generated magnetic field. The validity of this method has been extensively assessed,[16][17] however its performance is hindered by the limited workspace, whose dimension depends on the magnetic field. Another alternative is to embed the sensors internally in the continuum robot, combining magnetic sensors with Hall effect sensors:[18][19] the magnetic field is measured at the level of the Hall effect sensors in order to estimate the deflection of the robot. However, it has been noticed that the higher the bending of the manipulator, the higher is the estimation error, due to crosstalk between sensors and magnets.
Optical sensing: fiber Bragg grating sensors incorporated in an optical fiber can be embedded into the backbone of the continuum robot to estimate its shape; these sensors can only reflect a small range of the input light spectrum depending on their strain; therefore, by measuring the strain on each sensor it is possible to obtain the shape of the robot. This type of sensor is however expensive and is more prone to breaking in case of excessive strain, and this can happen in robots that can perform high deflections.
Control strategies
The control strategies can be distinguished in static and dynamic; the first one is based on the steady-state assumption, while the latter also considers the dynamic behaviour of the continuum robot. We can also differentiate between model-based controllers, that depend on a model of the robot, and model-free, that learn the robot's behaviour from data.[20]
Model-based static controllers: they rely on one of the modelling approaches presented above; once the model is defined, the kinematics must be inverted to obtain the desired actuator or configuration space variables. There are several ways to do this, like differential inverse kinematics, direct inversion or optimization.
Model-free static controllers: these approaches learn directly, via machine learning techniques (e.g. regression methods and neural networks), the inverse kinematic or the direct kinematic representation of the continuum robot from collected data, and they are also known as data-driven methods. Even though these controllers present the advantage of not having to establish an accurate model of the continuum robot, they perform worse than their model-based counterpart.
Model-based dynamic controllers: they need the formulation of the kinematic model and an associated dynamic formulation. As of 2021[update], they are in the early stage, as they require high computational power and high-dimensional sensory feedback. With improvements in computational power and sensing capabilities they could be crucial in industrial applications of continuum robots, where time and cost are also relevant along with accuracy.
Model-free dynamic controllers: they are still a relatively unexplored approach. Some works that propose machine learning techniques to learn the dynamic behaviour of continuum robots have been presented, but their performance is limited by high training time and instability of the machine learning model.
Hybrid approaches, that combine model-free and model-based controllers, can also present a valid alternative.
Applications
Continuum robots have been applied in many different fields.
Medical
Continuum robots have been widely applied in the medical field, in particular for minimally invasive surgery.[1] For example, Ion by Intuitive is a robotic-assisted endoluminal platform for minimally invasive peripheral lung biopsy, that allows to reach nodules located in peripheral areas of the lungs that cannot be reached by standard instrumentations; this allows to perform early-stage diagnoses of cancer.
Hazardous places
Continuum robots offer the possibility of completing tasks in hazardous and hostile environments. For example, a quadruped robot with continuum limbs has been developed: it can walk, crawl, trot and propel to whole arm grasping to negotiate difficult obstacles.[21]
Space
NASA has developed a continuum manipulator, named Tendril, that can extend into crevasses and under thermal blankets to access areas that would be otherwise inaccessible with conventional means.[22]
Subsea
The AMADEUS project developed a dextrous underwater robot for grasping and manipulation tasks, while the FLAPS project created propulsion systems that replicate the mechanisms of fish swimming.[23]
^Chen, Gang; Pham, Minh Tu; Redarce, Tanneguy (2008), Lee, Sukhan; Suh, Il Hong; Kim, Mun Sang (eds.), "A Guidance Control Strategy for Semi-autonomous Colonoscopy Using a Continuum Robot", Recent Progress in Robotics: Viable Robotic Service to Human: An Edition of the Selected Papers from the 13th International Conference on Advanced Robotics, Lecture Notes in Control and Information Sciences, vol. 370, Berlin, Heidelberg: Springer, pp. 63–78, doi:10.1007/978-3-540-76729-9_6, ISBN978-3-540-76729-9
Barbadian pirate (1778–1844) Sam Lord's Castle in 1949. Samuel Hall Lord (1778 – 5 November 1844), also known as Sam Lord, was one of the most famous buccaneers on the island of Barbados. Lord amassed great wealth for his castle-mansion in Barbados. He did this through the direct plundering of ships stranded in the coral reefs just off the coast of his estate (UN/LOCODE: BB SLC). According to legend, Sam Lord would hang lanterns high in the coconut trees around his estate. Passing ships f...
Sebuah kapal dagang bekerja di laut yang deras saat gelombang besar menghadang, Teluk Biscay, sekitar 1940. Gelombang raksasa, juga dikenal sebagai gelombang ekstrem, gelombang pembunuh, gelombang aneh atau gelombang monster adalah gelombang yang lebih besar dari dua kali ukuran gelombang di sekitarnya, sangat tidak dapat diprediksi, dan sering datang secara tidak terduga dari arah selain angin dan ombak yang ada.[1] Gelombang raksasa menimbulkan ancaman besar bagi kapal dan struktur ...
Türkiye 1.Lig 1967-1968 Competizione Türkiye 1.Lig Sport Calcio Edizione 10ª Organizzatore TFF Luogo Turchia Partecipanti 17 Formula Girone unico Sito web tff.org Risultati Vincitore Fenerbahçe(5º titolo) Retrocessioni Hacettepe Ankaragücü Feriköy Statistiche Miglior marcatore Fevzi Zemzem (19) Incontri disputati 256 Gol segnati 598 (2,34 per incontro) Cronologia della competizione 1966-67 1968-69 Manuale L'edizione 1967-1968 della Türkiye 1.Lig...
Vysšaja Liga 1983высшая лига 1983 Competizione Vysšaja Liga Sport Calcio Edizione 47ª Organizzatore FFSSSR Date dal 27 marzo 1983al 6 novembre 1983 Luogo Unione Sovietica Partecipanti 18 Formula Girone all'italiana Risultati Vincitore Dnepr(1º titolo) Retrocessioni T'orp'edo KutaisiNistru Kišinëv Statistiche Miglior marcatore Gavrilov (18) Incontri disputati 306 Gol segnati 725 (2,37 per incontro) Cronologia della competizione 1982 1984 Manuale L'edizi...
Americans of Guinean birth or descent This article is about US residents with origins in the Republic of Guinea. For the group of Americans formerly known as Guinea people, see Chestnut Ridge people. Guinean AmericansTotal population3,016 (ancestry or ethnic origin, 2000 US Census)[1] 11,000 (Guinean born, 2008–2009 US Census)[2]Regions with significant populationsMainly Washington, DC, New York City, Georgia, Texas, Ohio, Illinois and Rhode IslandLanguagesMain American Engl...
British politician (born 1950) Jean LambertPrincipal Speaker of the Green PartyIn office1998–1999Serving with Mike WoodinPreceded byPeg AlexanderSucceeded byMargaret WrightIn office1992–1993Serving with Richard Lawson (1992) Mallen Baker (1992-1993)Preceded byOffice createdSucceeded byJan ClarkMember of the European Parliamentfor LondonIn office10 June 1999 – 1 July 2019[1][2]Preceded byPosition establishedSucceeded byScott Ainslie Personal ...
British multinational aerospace company This article is about the Rolls-Royce aircraft engine and power systems business and its owner since 1987. For previous owners, see Rolls-Royce Limited. For the present day manufacturers of automobiles, see Rolls-Royce Motor Cars. For other uses, see Rolls-Royce. Rolls-Royce Holdings plcTrade nameRolls-RoyceCompany typePublic limited companyTraded asLSE: RR.FTSE 100 ComponentISINGB00B63H8491 IndustryAerospace, Defence, Energy, MarinePredecesso...
ساندرو برتيني (بالإيطالية: Sandro Pertini) الرئيس السابع لجمهورية إيطاليا في المنصب9 يوليو 1978 – 29 يونيو 1985 رئيس الوزراء جوليو أندريوتيفرانشيسكو كوسيغاأرنالدو فورلاني جيوفاني سبادولينيأمنتوري فانفانيبتينو كراكسي جيوفاني ليوني فرانشيسكو كوسيغا مجلس النواب الإيط�...
Election in Connecticut Main article: 1832 United States presidential election 1832 United States presidential election in Connecticut ← 1828 November 2 – December 5, 1832 1836 → Nominee Henry Clay Andrew Jackson William Wirt Party National Republican Democratic Anti-Masonic Home state Kentucky Tennessee Maryland Running mate John Sergeant Martin Van Buren Amos Ellmaker Electoral vote 8 0 0 Popular vote 18,155 11,269 3,409 Percentage 55.29% 3...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. SDN 022 GalangInformasiJenisSekolah NegeriAlamatLokasiPulau Jemare, Batam, Kepri, IndonesiaMoto SDN 022 Galang, merupakan salah satu Sekolah Menengah Dasar Negeri yang ada di Provinsi Kepulauan Riau, yang beralamat di Pulau Jemare - Batam. Sama d...
Topper (comic strip) For the comic-strip term, see Topper (comic strip). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Topper comics – news · newspapers · books · scholar · JSTOR (March 2012) (Learn how and when to remove this message) The TopperThe cover of The Topper #1Publication informationPub...
هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (مايو 2020) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وص�...
العلاقات المغربية-الأوروبية الاتحاد الأوروبي المغرب العلاقات المغربية-الأوروبية تعديل مصدري - تعديل تعتمد العلاقات بين المغرب والاتحاد الأوروبي بشكل أساسي على سياسة الجوار الأوروبي (ENP) والشراكة الأورومتوسطية والاتحاد من أجل المتوسط. من بين الدول الخاض�...
Cet article est une ébauche concernant une localité canadienne et Terre-Neuve-et-Labrador. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Springdale Administration Pays Canada Province Terre-Neuve-et-Labrador Statut municipal Town Constitution 1877 Géographie Coordonnées 49° 30′ nord, 56° 04′ ouest Divers Code géographique 1008061 Localisation Géolocalisation sur la carte : ...
جوفيند سواروب (بالهندية: गोविन्द स्वरुप) معلومات شخصية الميلاد 1 يناير 1929 منطقة مراد أباد الوفاة 7 سبتمبر 2020 (91 سنة) [1] بونه الإقامة بونه مواطنة الهند (1947–2020) الراج البريطاني (1929–1947) عضو في الجمعية الملكية، والأكاديمية الهندية للعلوم...
Russian footballer In this name that follows Eastern Slavic naming customs, the patronymic is Abdurashitovich and the family name is Zhamaletdinov. Timur Zhamaletdinov Zhamaletdinov with CSKA in 2017Personal informationFull name Timur Abdurashitovich ZhamaletdinovDate of birth (1997-05-21) 21 May 1997 (age 27)Place of birth Moscow, RussiaHeight 1.81 m (5 ft 11 in)Position(s) ForwardTeam informationCurrent team Shinnik YaroslavlNumber 10Youth career2003–2014 Lokomotiv...
Cet article est une ébauche concernant un coureur cycliste italien. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Pour plus d’informations, voyez le projet cyclisme. Angelo ConternoInformationsNaissance 13 mars 1925TurinDécès 1er décembre 2007 (à 82 ans)TurinNationalité italienneÉquipes professionnelles 09.1950-12.1950 Covolo Torino 1951 Frejus-Ursus Taurea-Cig 1952-1954 Frejus 1955 Torpado-Ursus 1956-1957 Bianchi-Pirelli 1958-1960 Carpano 1961 Bar...
Spanish actress This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (June 2012) (Learn how and when to remove this message) Lorena BerdúnBorn11 December 1973Madrid, SpainOccupation(s)TV presenter, psychologist and actress. Lorena Berdún (born 11 December 1973 in Madrid) is a Spanish psychologist, television presenter and actress.[1] She studied psycholog...