Jacobi field

In Riemannian geometry, a Jacobi field is a vector field along a geodesic in a Riemannian manifold describing the difference between the geodesic and an "infinitesimally close" geodesic. In other words, the Jacobi fields along a geodesic form the tangent space to the geodesic in the space of all geodesics. They are named after Carl Jacobi.

Definitions and properties

Jacobi fields can be obtained in the following way: Take a smooth one parameter family of geodesics with , then

is a Jacobi field, and describes the behavior of the geodesics in an infinitesimal neighborhood of a given geodesic .

A vector field J along a geodesic is said to be a Jacobi field if it satisfies the Jacobi equation:

where D denotes the covariant derivative with respect to the Levi-Civita connection, R the Riemann curvature tensor, the tangent vector field, and t is the parameter of the geodesic. On a complete Riemannian manifold, for any Jacobi field there is a family of geodesics describing the field (as in the preceding paragraph).

The Jacobi equation is a linear, second order ordinary differential equation; in particular, values of and at one point of uniquely determine the Jacobi field. Furthermore, the set of Jacobi fields along a given geodesic forms a real vector space of dimension twice the dimension of the manifold.

As trivial examples of Jacobi fields one can consider and . These correspond respectively to the following families of reparametrisations: and .

Any Jacobi field can be represented in a unique way as a sum , where is a linear combination of trivial Jacobi fields and is orthogonal to , for all . The field then corresponds to the same variation of geodesics as , only with changed parameterizations.

Motivating example

On a unit sphere, the geodesics through the North pole are great circles. Consider two such geodesics and with natural parameter, , separated by an angle . The geodesic distance

is

Computing this requires knowing the geodesics. The most interesting information is just that

, for any .

Instead, we can consider the derivative with respect to at :

Notice that we still detect the intersection of the geodesics at . Notice further that to calculate this derivative we do not actually need to know

,

rather, all we need do is solve the equation

,

for some given initial data.

Jacobi fields give a natural generalization of this phenomenon to arbitrary Riemannian manifolds.

Solving the Jacobi equation

Let and complete this to get an orthonormal basis at . Parallel transport it to get a basis all along . This gives an orthonormal basis with . The Jacobi field can be written in co-ordinates in terms of this basis as and thus

and the Jacobi equation can be rewritten as a system

for each . This way we get a linear ordinary differential equation (ODE). Since this ODE has smooth coefficients we have that solutions exist for all and are unique, given and , for all .

Examples

Consider a geodesic with parallel orthonormal frame , , constructed as above.

  • The vector fields along given by and are Jacobi fields.
  • In Euclidean space (as well as for spaces of constant zero sectional curvature) Jacobi fields are simply those fields linear in .
  • For Riemannian manifolds of constant negative sectional curvature , any Jacobi field is a linear combination of , and , where .
  • For Riemannian manifolds of constant positive sectional curvature , any Jacobi field is a linear combination of , , and , where .
  • The restriction of a Killing vector field to a geodesic is a Jacobi field in any Riemannian manifold.

See also

References

  • Manfredo Perdigão do Carmo. Riemannian geometry. Translated from the second Portuguese edition by Francis Flaherty. Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA, 1992. xiv+300 pp. ISBN 0-8176-3490-8
  • Jeff Cheeger and David G. Ebin. Comparison theorems in Riemannian geometry. Revised reprint of the 1975 original. AMS Chelsea Publishing, Providence, RI, 2008. x+168 pp. ISBN 978-0-8218-4417-5
  • Shoshichi Kobayashi and Katsumi Nomizu. Foundations of differential geometry. Vol. II. Reprint of the 1969 original. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1996. xvi+468 pp. ISBN 0-471-15732-5
  • Barrett O'Neill. Semi-Riemannian geometry. With applications to relativity. Pure and Applied Mathematics, 103. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. xiii+468 pp. ISBN 0-12-526740-1

Read other articles:

Presiden Republik GambiaBendera kepresidenanPetahanaAdama Barrowsejak 19 Januari 2017KediamanKediaman Negara, BanjulMasa jabatan5 tahun, dapat dipilih kembaliPejabat perdanaDawda JawaraDibentuk24 April 1970WakilWakil Presiden GambiaSitus webhttp://statehouse.gov.gm/ Berikut ini adalah daftar Kepala Negara Gambia, sejak kemerdekaan Gambia pada tahun 1965 hingga sekarang. Sejak 1965 hingga 1970 Kepala Negara di bawah Undang-Undang Kemerdekaan Gambia 1964 adalah Ratu Gambia, Elizabeth II, y...

 

 

Paul HoganAMHogan di Konser Amal Kerajaan pada tahun 1980Lahir8 Oktober 1939 (umur 84)Sydney, New South Wales, AustraliaPekerjaanAktorproduserpenulispelawakpembawa acara televisiTahun aktif1971–sekarangSuami/istriNoelene Edwards(m. 1958; div. 1981)(m. 1982; div. 1989)[1] Linda Kozlowski ​ ​(m. 1990; div. 2014)​[2]Anak6 Paul Hogan AM (lahir 8 Oktober 1939) adalah seorang aktor, pelawak, produser film, pembawa acara te...

 

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (June 2019) The topic of this article may not meet Wikipedia's notability guideline for biographies. Please help to demonstrate the notability of the topic by citing reliable secondary...

Qingdao (Hanzi: 青島) merupakan kota terbesar di provinsi Shandong, RRT. Terletak di pesisir timur daratan Tiongkok, kota ini terkenal ke seluruh Tiongkok karena produksi bir-nya yang dikenal dengan nama Bir Qingdao (青島啤酒). Artikel bertopik geografi atau tempat Tiongkok ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

 

 

Artikel ini adalah mengenai senyawa kimia yang bernama melamina. Istilah melamina juga digunakan untuk merujuk pada resin melamina, yakni plastik yang dibuat dari melamina dan formaldehida. Bedakan pula dengan melanin, pigmen yang ditemukan pada kulit dan rambut. Melamina[1] Nama Nama IUPAC 1,3,5-Triazina-2,4,6-triamina Nama lain SianurotriamidaSianurotriaminaSianuramida Penanda Nomor CAS 108-78-1 Model 3D (JSmol) Gambar interaktif 3DMet {{{3DMet}}} Nomor EC PubChem CID 7955 Nomor RTE...

 

 

Welsh football manager and former international player Robert Page (footballer) redirects here. For other people with similar names, see Robert Page. Rob Page Page in 2023Personal informationFull name Robert John Page[1]Date of birth (1974-09-03) 3 September 1974 (age 49)[1]Place of birth Llwynypia, Wales[1][2]Height 6 ft 0 in (1.83 m)[3]Position(s) DefenderTeam informationCurrent team Wales (manager)Youth career1985–1993 WatfordSe...

† Палеопропитеки Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКласс:�...

 

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

 

Transistor efek medan sambunganSimbol TipeKomponen aktifKategoriTransistor FETPenemuJohn Bardeen, Walter Houser Brattain dan William Shockley (1947)Komponen sejenisMOSFETKemasan3 kaki (gerbang, cerat, sumber)lbs Arus listrik dari sumber ke cerat dalam JFET kanal-p dikurangi jika tegangan diberikan ke gerbang. Transistor efek medan sambungan (TEMS, JFET atau JUGFET) adalah tipe paling sederhana dari transistor efek medan. Ini dapat digunakan sebagai sebuah sakelar terkendali elektronik atau re...

American political convention This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 1996 Democratic National Convention – news · newspapers · books · scholar · JSTOR (August 2012) (Learn how and when to remove this message) 1996 Democratic National Convention1996 presidential election Nominees Clinton and GoreConv...

 

 

Forced relocation under the threat of death For other uses, see Death march (disambiguation). Armenians being led away by armed guards from Harpoot, where the educated and the influential of the city were selected to be massacred at the nearest suitable site, May 1915. A death march is a forced march of prisoners of war or other captives or deportees in which individuals are left to die along the way.[1] It is distinguished from simple prisoner transport via foot march. Article 19 of ...

 

 

توسكانا Granducato di Toscana دوقية توسكانا الكبرى تابعة للإمبراطورية الرومانية المقدسة (حتى 1648) [1]     1569 – 18011815 – 1859   دوقية تسكانة الكبرىعلم توسكانا تحت حكم آل ميديتشي دوقية تسكانة الكبرىشعار النشيد : La Leopolda دوقية توسكانا عام 1700 عاصمة فلورنسا نظام الحكم ملكية ا...

Public school in Fresno, California, United StatesHerbert Hoover High SchoolAddress5550 N. First StreetFresno, California 93710United StatesCoordinates36°49′05″N 119°46′20″W / 36.81807°N 119.77225°W / 36.81807; -119.77225InformationTypePublicEstablished1963 (1963)[citation needed]PrincipalCourtney Curtis[1]Teaching staff87.30 (FTE)[2]Enrollment1,780 (2018-19)[2]Student to teacher ratio20.39[2]Campus sizeMedium-si...

 

 

Football league seasonIsraeli Premier LeagueSeason2001–02ChampionsMaccabi Haifa 7th titleRelegatedHapoel Haifa Maccabi Kiryat GatTop goalscorerKobi Refua (18)← 2000–01 2002–03 → The 2001–02 Israeli Premier League season saw Maccabi Haifa win their second consecutive title. It took place from the first match on 25 August 2001 to the final match on 18 May 2002. Two teams from Liga Leumit were promoted at the end of the previous season: Hapoel Be'er Sheva and Maccabi Kiryat Gat. The ...

 

 

Los cosechadores (De korenoogst) Año 1565Autor Pieter Brueghel el ViejoTécnica Óleo sobre maderaEstilo RenacimientoTamaño 1,18 m × 1,61 mLocalización Museo Metropolitano de Arte, Nueva York,  Estados Unidos[editar datos en Wikidata] Los cosechadores (en neerlandés, De korenoogst) es una obra del pintor Pieter Brueghel el Viejo, perteneciente al ciclo de seis obras sobre los «Meses» del año. Representa el verano o los meses de agosto y septiembre. Es un óleo sobre tab...

Part of a series onPhysical cosmology Big Bang · Universe Age of the universe Chronology of the universe Early universe Inflation · Nucleosynthesis Backgrounds Gravitational wave (GWB) Microwave (CMB) · Neutrino (CNB) Expansion · Future Hubble's law · Redshift Expansion of the universe FLRW metric · Friedmann equations Inhomogeneous cosmology Future of an expanding universe Ultimate fate of the universe Components · Structure Components Lambda-CDM mod...

 

 

母と暮せば監督 山田洋次脚本 山田洋次平松恵美子製作 井上麻矢(企画)榎望製作総指揮 迫本淳一出演者 吉永小百合二宮和也黒木華音楽 坂本龍一撮影 近森眞史編集 石井巌制作会社 松竹松竹撮影所東京スタジオ製作会社 2015映画「母と暮せば」製作委員会配給 松竹公開 2015年12月12日上映時間 130分製作国 日本言語 日本語興行収入 19.8億円[1]テンプレートを表示 『...

 

 

You can help expand this article with text translated from the corresponding article in Portuguese. (July 2012) Click [show] for important translation instructions. View a machine-translated version of the Portuguese article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English W...

اللغة السُّــــوَيْديَّة الاسم الذاتي svenska خريطة المناطق التي يَقطنها عدد ملحوظ من متحدثي السويدية في إسكندنافيا. الناطقون 9.3 مليون[1] الدول السويد، فنلندا المنطقة شمال أوروبا الرتبة 89 الكتابة أبجدية لاتينية النسب هندية أوروبية اللغة السُّــــوَيْديَّة ترسيم رسمية �...

 

 

American indie rock band TyphoonTyphoon playing at the Gothic in Denver (April 2022)Background informationOriginSalem, OregonGenresIndie rockYears active2005–presentLabelsRoll Call Records, Tender Loving Empire, MapleMusic Recordings (Canada)Members Kyle Morton Toby Tanabe Dave Hall Devin Gallagher Eric Stipe Alex Fitch Shannon Steele Jordan Vale Past members Pieter Hilton Ryan McAlpin Jen Hufnagel Paige Morton Nora Zimmerly Grant Hall Tyler Ferrin Websitewearetyphoon.com Typhoon is an Amer...