From a homotopy group of a special orthogonal group to a homotopy group of spheres
In mathematics , the J -homomorphism is a mapping from the homotopy groups of the special orthogonal groups to the homotopy groups of spheres . It was defined by George W. Whitehead (1942 ), extending a construction of Heinz Hopf (1935 ).
Definition
Whitehead's original homomorphism is defined geometrically, and gives a homomorphism
J
: : -->
π π -->
r
(
S
O
(
q
)
)
→ → -->
π π -->
r
+
q
(
S
q
)
{\displaystyle J\colon \pi _{r}(\mathrm {SO} (q))\to \pi _{r+q}(S^{q})}
of abelian groups for integers q , and
r
≥ ≥ -->
2
{\displaystyle r\geq 2}
. (Hopf defined this for the special case
q
=
r
+
1
{\displaystyle q=r+1}
.)
The J -homomorphism can be defined as follows.
An element of the special orthogonal group SO(q ) can be regarded as a map
S
q
− − -->
1
→ → -->
S
q
− − -->
1
{\displaystyle S^{q-1}\rightarrow S^{q-1}}
and the homotopy group
π π -->
r
(
SO
-->
(
q
)
)
{\displaystyle \pi _{r}(\operatorname {SO} (q))}
) consists of homotopy classes of maps from the r -sphere to SO(q ).
Thus an element of
π π -->
r
(
SO
-->
(
q
)
)
{\displaystyle \pi _{r}(\operatorname {SO} (q))}
can be represented by a map
S
r
× × -->
S
q
− − -->
1
→ → -->
S
q
− − -->
1
{\displaystyle S^{r}\times S^{q-1}\rightarrow S^{q-1}}
Applying the Hopf construction to this gives a map
S
r
+
q
=
S
r
∗ ∗ -->
S
q
− − -->
1
→ → -->
S
(
S
q
− − -->
1
)
=
S
q
{\displaystyle S^{r+q}=S^{r}*S^{q-1}\rightarrow S(S^{q-1})=S^{q}}
in
π π -->
r
+
q
(
S
q
)
{\displaystyle \pi _{r+q}(S^{q})}
, which Whitehead defined as the image of the element of
π π -->
r
(
SO
-->
(
q
)
)
{\displaystyle \pi _{r}(\operatorname {SO} (q))}
under the J-homomorphism.
Taking a limit as q tends to infinity gives the stable J -homomorphism in stable homotopy theory :
J
: : -->
π π -->
r
(
S
O
)
→ → -->
π π -->
r
S
,
{\displaystyle J\colon \pi _{r}(\mathrm {SO} )\to \pi _{r}^{S},}
where
S
O
{\displaystyle \mathrm {SO} }
is the infinite special orthogonal group, and the right-hand side is the r -th stable stem of the stable homotopy groups of spheres .
Image of the J-homomorphism
The image of the J -homomorphism was described by Frank Adams (1966 ), assuming the Adams conjecture of Adams (1963) which was proved by Daniel Quillen (1971 ), as follows. The group
π π -->
r
(
SO
)
{\displaystyle \pi _{r}(\operatorname {SO} )}
is given by Bott periodicity . It is always cyclic ; and if r is positive, it is of order 2 if r is 0 or 1 modulo 8, infinite if r is 3 or 7 modulo 8, and order 1 otherwise (Switzer 1975 , p. 488). In particular the image of the stable J -homomorphism is cyclic. The stable homotopy groups
π π -->
r
S
{\displaystyle \pi _{r}^{S}}
are the direct sum of the (cyclic) image of the J -homomorphism, and the kernel of the Adams e-invariant (Adams 1966 ), a homomorphism from the stable homotopy groups to
Q
/
Z
{\displaystyle \mathbb {Q} /\mathbb {Z} }
. If r is 0 or 1 mod 8 and positive, the order of the image is 2 (so in this case the J -homomorphism is injective ). If r is 3 or 7 mod 8, the image is a cyclic group of order equal to the denominator of
B
2
n
/
4
n
{\displaystyle B_{2n}/4n}
, where
B
2
n
{\displaystyle B_{2n}}
is a Bernoulli number . In the remaining cases where r is 2, 4, 5, or 6 mod 8 the image is trivial because
π π -->
r
(
SO
)
{\displaystyle \pi _{r}(\operatorname {SO} )}
is trivial.
r
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
π π -->
r
(
SO
)
{\displaystyle \pi _{r}(\operatorname {SO} )}
1
2
1
Z
{\displaystyle \mathbb {Z} }
1
1
1
Z
{\displaystyle \mathbb {Z} }
2
2
1
Z
{\displaystyle \mathbb {Z} }
1
1
1
Z
{\displaystyle \mathbb {Z} }
2
2
|
im
-->
(
J
)
|
{\displaystyle |\operatorname {im} (J)|}
1
2
1
24
1
1
1
240
2
2
1
504
1
1
1
480
2
2
π π -->
r
S
{\displaystyle \pi _{r}^{S}}
Z
{\displaystyle \mathbb {Z} }
2
2
24
1
1
2
240
22
23
6
504
1
3
22
480×2
22
24
B
2
n
{\displaystyle B_{2n}}
1 ⁄6
−1 ⁄30
1 ⁄42
−1 ⁄30
Applications
Michael Atiyah (1961 ) introduced the group J (X ) of a space X , which for X a sphere is the image of the J -homomorphism in a suitable dimension.
The cokernel of the J -homomorphism
J
: : -->
π π -->
n
(
S
O
)
→ → -->
π π -->
n
S
{\displaystyle J\colon \pi _{n}(\mathrm {SO} )\to \pi _{n}^{S}}
appears in the group Θn of h -cobordism classes of oriented homotopy n -spheres (Kosinski (1992) ).
References
Atiyah, Michael Francis (1961), "Thom complexes", Proceedings of the London Mathematical Society , Third Series, 11 : 291–310, doi :10.1112/plms/s3-11.1.291 , MR 0131880
Adams, J. F. (1963), "On the groups J(X) I", Topology , 2 (3): 181, doi :10.1016/0040-9383(63)90001-6
Adams, J. F. (1965a), "On the groups J(X) II", Topology , 3 (2): 137, doi :10.1016/0040-9383(65)90040-6
Adams, J. F. (1965b), "On the groups J(X) III", Topology , 3 (3): 193, doi :10.1016/0040-9383(65)90054-6
Adams, J. F. (1966), "On the groups J(X) IV", Topology , 5 : 21, doi :10.1016/0040-9383(66)90004-8 . "Correction", Topology , 7 (3): 331, 1968, doi :10.1016/0040-9383(68)90010-4
Hopf, Heinz (1935), "Über die Abbildungen von Sphären auf Sphäre niedrigerer Dimension" , Fundamenta Mathematicae , 25 : 427–440
Kosinski, Antoni A. (1992), Differential Manifolds , San Diego, CA: Academic Press , pp. 195ff , ISBN 0-12-421850-4
Milnor, John W. (2011), "Differential topology forty-six years later" (PDF) , Notices of the American Mathematical Society , 58 (6): 804–809
Quillen, Daniel (1971), "The Adams conjecture", Topology , 10 : 67–80, doi :10.1016/0040-9383(71)90018-8 , MR 0279804
Switzer, Robert M. (1975), Algebraic Topology—Homotopy and Homology , Springer-Verlag , ISBN 978-0-387-06758-2
Whitehead, George W. (1942), "On the homotopy groups of spheres and rotation groups", Annals of Mathematics , Second Series, 43 (4): 634–640, doi :10.2307/1968956 , JSTOR 1968956 , MR 0007107
Whitehead, George W. (1978), Elements of homotopy theory , Berlin: Springer , ISBN 0-387-90336-4 , MR 0516508