Intensional logic

Intensional logic is an approach to predicate logic that extends first-order logic, which has quantifiers that range over the individuals of a universe (extensions), by additional quantifiers that range over terms that may have such individuals as their value (intensions). The distinction between intensional and extensional entities is parallel to the distinction between sense and reference.

Overview

Logic is the study of proof and deduction as manifested in language (abstracting from any underlying psychological or biological processes).[1] Logic is not a closed, completed science, and presumably, it will never stop developing: the logical analysis can penetrate into varying depths of the language[2] (sentences regarded as atomic, or splitting them to predicates applied to individual terms, or even revealing such fine logical structures like modal, temporal, dynamic, epistemic ones).

In order to achieve its special goal, logic was forced to develop its own formal tools, most notably its own grammar, detached from simply making direct use of the underlying natural language.[3] Functors (also known as function words) belong to the most important categories in logical grammar (along with basic categories like sentence and individual name):[4] a functor can be regarded as an "incomplete" expression with argument places to fill in. If we fill them in with appropriate subexpressions, then the resulting entirely completed expression can be regarded as a result, an output.[5] Thus, a functor acts like a function sign,[6] taking on input expressions, resulting in a new, output expression.[5]

Semantics links expressions of language to the outside world. Also logical semantics has developed its own structure. Semantic values can be attributed to expressions in basic categories: the reference of an individual name (the "designated" object named by that) is called its extension; and as for sentences, their truth value is their extension.[7]

As for functors, some of them are simpler than others: extension can be attributed to them in a simple way. In case of a so-called extensional functor we can in a sense abstract from the "material" part of its inputs and output, and regard the functor as a function turning directly the extension of its input(s) into the extension of its output. Of course, it is assumed that we can do so at all: the extension of input expression(s) determines the extension of the resulting expression. Functors for which this assumption does not hold are called intensional.[8]

Natural languages abound with intensional functors;[9] this can be illustrated by intensional statements. Extensional logic cannot reach inside such fine logical structures of the language, but stops at a coarser level. The attempts for such deep logical analysis have a long past: authors as early as Aristotle had already studied modal syllogisms.[10] Gottlob Frege developed a kind of two-dimensional semantics: for resolving questions like those of intensional statements, Frege introduced a distinction between two semantic values: sentences (and individual terms) have both an extension and an intension.[6] These semantic values can be interpreted, transferred also for functors (except for intensional functors, they have only intension).

As mentioned, motivations for settling problems that belong today to intensional logic have a long past. As for attempts of formalizations, the development of calculi often preceded the finding of their corresponding formal semantics. Intensional logic is not alone in that: also Gottlob Frege accompanied his (extensional) calculus with detailed explanations of the semantical motivations, but the formal foundation of its semantics appeared only in the 20th century. Thus sometimes similar patterns repeated themselves for the history of development of intensional logic like earlier for that of extensional logic.[11]

There are some intensional logic systems that claim to fully analyze the common language:

Modal logic is historically the earliest area in the study of intensional logic, originally motivated by formalizing "necessity" and "possibility" (recently, this original motivation belongs to alethic logic, just one of the many branches of modal logic).[12]

Modal logic can be regarded also as the most simple appearance of such studies: it extends extensional logic just with a few sentential functors:[13] these are intensional, and they are interpreted (in the metarules of semantics) as quantifying over possible worlds. For example, the Necessity operator (the 'box') when applied to a sentence A says 'The sentence "('box')A" is true in world i if and only if it is true in all worlds accessible from world i'. The corresponding Possibility operator (the 'diamond') when applied to A asserts that "('diamond')A" is true in world i if and only if A is true in some worlds (at least one) accessible to world i. The exact semantic content of these assertions therefore depends crucially on the nature of the accessibility relation. For example, is world i accessible from itself? The answer to this question characterizes the precise nature of the system, and many exist, answering moral and temporal questions (in a temporal system, the accessibility relation relates states or 'instants' and only the future is accessible from a given moment. The Necessity operator corresponds to 'for all future moments' in this logic. The operators are related to one another by similar dualities to those relating existential and universal quantifiers[14] (for example by the analogous correspondents of De Morgan's laws). I.e., Something is necessary if and only if its negation is not possible, i.e. inconsistent. Syntactically, the operators are not quantifiers, they do not bind variables,[15] but govern whole sentences. This gives rise to the problem of referential opacity, i.e. the problem of quantifying over or 'into' modal contexts. The operators appear in the grammar as sentential functors,[14] they are called modal operators.[15]

As mentioned, precursors of modal logic include Aristotle. Medieval scholarly discussions accompanied its development, for example about de re versus de dicto modalities: said in recent terms, in the de re modality the modal functor is applied to an open sentence, the variable is bound by a quantifier whose scope includes the whole intensional subterm.[10]

Modern modal logic began with the Clarence Irving Lewis. His work was motivated by establishing the notion of strict implication.[16] The possible worlds approach enabled more exact study of semantical questions. Exact formalization resulted in Kripke semantics (developed by Saul Kripke, Jaakko Hintikka, Stig Kanger).[13]

Type-theoretical intensional logic

Already in 1951, Alonzo Church had developed an intensional calculus. The semantical motivations were explained expressively, of course without those tools that we now use for establishing semantics for modal logic in a formal way, because they had not been invented then:[17] Church did not provide formal semantic definitions.[18]

Later, the possible worlds approach to semantics provided tools for a comprehensive study in intensional semantics. Richard Montague could preserve the most important advantages of Church's intensional calculus in his system. Unlike its forerunner, Montague grammar was built in a purely semantical way: a simpler treatment became possible, thank to the new formal tools invented since Church's work.[17]

See also

Notes

  1. ^ Ruzsa 2000, p. 10
  2. ^ Ruzsa 2000, p. 13
  3. ^ Ruzsa 2000, p. 12
  4. ^ Ruzsa 2000, p. 21
  5. ^ a b Ruzsa 2000, p. 22
  6. ^ a b Ruzsa 2000, p. 24
  7. ^ Ruzsa 2000, pp. 22–23
  8. ^ Ruzsa 2000, pp. 25–26
  9. ^ Ruzsa 1987, p. 724
  10. ^ a b Ruzsa 2000, pp. 246–247
  11. ^ Ruzsa 2000, p. 128
  12. ^ Ruzsa 2000, p. 252
  13. ^ a b Ruzsa 2000, p. 247
  14. ^ a b Ruzsa 2000, p. 245
  15. ^ a b Ruzsa 2000, p. 269
  16. ^ Ruzsa 2000, p. 256
  17. ^ a b Ruzsa 2000, p. 297
  18. ^ Ruzsa 1989, p. 492

References

  • Melvin Fitting (2004). First-order intensional logic. Annals of Pure and Applied Logic 127:171–193. The 2003 preprint Archived 2008-07-04 at the Wayback Machine is used in this article.
  • Melvin Fitting (2007). Intensional Logic. In the Stanford Encyclopedia of Philosophy.
  • Ruzsa, Imre (1984), Klasszikus, modális és intenzionális logika (in Hungarian), Budapest: Akadémiai Kiadó, ISBN 963-05-3084-8. Translation of the title: “Classical, modal and intensional logic”.
  • Ruzsa, Imre (1987), "Függelék. Az utolsó két évtized", in Kneale, William; Kneale, Martha (eds.), A logika fejlődése (in Hungarian), Budapest: Gondolat, pp. 695–734, ISBN 963-281-780-X. Original: “The Development of Logic”. Translation of the title of the Appendix by Ruzsa, present only in Hungarian publication: “The last two decades”.
  • Ruzsa, Imre (1988), Logikai szintaxis és szemantika (in Hungarian), vol. 1, Budapest: Akadémiai Kiadó, ISBN 963-05-4720-1. Translation of the title: “Syntax and semantics of logic”.
  • Ruzsa, Imre (1989), Logikai szintaxis és szemantika, vol. 2, Budapest: Akadémiai Kiadó, ISBN 963-05-5313-9.
  • Ruzsa, Imre (2000), Bevezetés a modern logikába, Osiris tankönyvek (in Hungarian), Budapest: Osiris, ISBN 963-379-978-3 Translation of the title: “Introduction to modern logic”.

Read other articles:

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

AidaAlbum studio karya Aida MustafaDirilis1966GenrePopLabelElshinta RecordsProduserJalus SuhermanKronologi Aida Mustafa -String Module Error: Match not foundString Module Error: Match not found Aida (1966) Libra Bintangku(1967)Libra Bintangku1967 Aida merupakan album musik perdana karya penyanyi berkebangsaaan Indonesia di era 60-an, Aida Mustafa yang dirilis pada tahun 1966[1]. Di album ini Aida diiringi oleh Orkes Big Bayangkara's[2]. Daftar lagu Sisi A Track Judul Penci...

 

الدوري الأسترالي لكرة القدم (A-League)   الجهة المنظمة اتحاد أستراليا لكرة القدم  تاريخ الإنشاء 2004  الرياضة كرة القدم  البلد أستراليا نيوزيلندا  الإتحاد الاتحاد الآسيوي لكرة القدم مسابقات متعلقة دوري أبطال آسيا الكأس المحلي كأس الاتحاد الأسترالي الراعي هيونداي ا...

Australian author, adventurer, photographer & mariner (1903–1982) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Alan Villiers – news · newspapers · books · scholar · JSTOR (April 2014) (Learn how and when to remove this template message) Alan VilliersAlan Villiers aboard the Grace Harwar in 1929BornA...

 

Сионистская организация Америки Административный центр  США, Нью-Йорк, 633 Third Avenue, Suite 31-B Локация  США Тип организации Zionist organization[d], группа лоббирования[d] и некоммерческая организация Основание Дата основания 1897 Оборот ▼5,23 млн $ (2019)[1] Сайт zoa.org (англ.) &#...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Maria Lenk Aquatics Centre – news · newspapers · books · scholar · JSTOR (March 2016) (Learn how and when to remove this template message) 22°58′28″S 43°23′16″W / 22.97444°S 43.38778°W / -22.97444; -43.38778 Aerial view of Ma...

American baseball player (born 1964) For other uses, see Bobby Witt (disambiguation) and Robert Witt. Baseball player Bobby WittPitcherBorn: (1964-05-11) May 11, 1964 (age 59)Arlington, Virginia, U.S.Batted: RightThrew: RightMLB debutApril 10, 1986, for the Texas RangersLast MLB appearanceOctober 7, 2001, for the Arizona DiamondbacksMLB statisticsWin–loss record142–157Earned run average4.83Strikeouts1,955 Teams Texas Rangers (1986–1992) Oakland Athleti...

 

Gunung Kinabalu Titik tertinggiKetinggian4.095 m (13.435 ft)Puncak4.095 m (13.435 ft)Koordinat06°05′N 116°33′E / 6.083°N 116.550°E / 6.083; 116.550 GeografiLetakSabah, MalaysiaPegununganPegunungan Crocker Pemandangan matahari terbenam di Gunung Kinabalu Gunung Kinabalu terletak di Sabah, Malaysia, dengan ketinggian 4.095 mdpl. Gunung ini merupakan gunung tertinggi di Pulau Kalimantan, tertinggi di Malaysia, dan tertinggi kelima di Asia...

 

Disambiguazione – Se stai cercando l'omonimo generale statunitense, vedi Jefferson Columbus Davis. Questa voce o sezione sugli argomenti militari statunitensi e politici statunitensi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti dei progetti di riferimento 1, 2. Jefferson DavisRitratto ufficiale di Jefferson Davis Presidente degl...

Huruf KirilZhe dengan breve Penggunaan Fonetis:[d͡ʒ]Alfabet KirilHuruf SlaviaАА́А̀А̂А̄ӒБВГҐДЂЃЕЕ́ÈЕ̂ЁЄЖЗЗ́ЅИИ́ЍИ̂ЙІЇЈКЛЉМНЊОŌПРСС́ТЋЌУУ́ У̀У̂ӮЎФХЦЧЏШЩЪЫЬЭЮЯHuruf non-SlaviaӐА̊А̃Ӓ̄ӔӘӘ́Ә̃ӚВ̌ҒГ̑Г̣Г̌ҔӺҒ̌ӶД̌Д̣Д̆ӖЕ̄Е̃Ё̄Є̈ӁҖӜҘӞЗ̌З̱З̣ԐԐ̈ӠӢИ̃ҊӤҚӃҠҞҜК̣ԚӅԮԒӍӉҢԨӇҤО́О̀О̆О̂О̃ӦӦ̄ӨӨ̄Ө́Ө̆ӪҨԤР̌ҎҪС̣С̱Т̌Т̣ҬУ̃Ӱ Ӱ́�...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

Vincent D'Onofrio nel 2023 Vincent Phillip D'Onofrio (New York, 30 giugno 1959) è un attore, regista e produttore cinematografico statunitense. Indice 1 Biografia 1.1 Vita privata 2 Filmografia 2.1 Attore 2.1.1 Cinema 2.1.2 Televisione 2.1.3 Cortometraggi 2.2 Sceneggiatore 2.3 Regista 3 Riconoscimenti 4 Doppiatori italiani 5 Note 6 Altri progetti 7 Collegamenti esterni Biografia Vincent D'onofrio alla prima di The Judge (2014) Figlio di Gennaro D'Onofrio, un pilota statunitense figlio di imm...

فالوذجمعلومات عامةالمنشأ إيران النوع شربات مثلج — طعام المكونات الرئيسية شعيرية تعديل - تعديل مصدري - تعديل ويكي بيانات الفَالُوذَج (بالفارسية: فالوده، پالوده) هي حلوى إيرانية تقليدية باردة تشبه الشربات.[1][2] تتكون من شعيرية رقيقة من النشا في شراب نصف مجمد يحتوي عل�...

 

List of pre-World War 2 television stations This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (May 2019) (Learn how and when to remove this message) History of television in the United States Eras Prewar and wartime broadcasting (1928–1947) First Golden Age (1947–1960) Network era (1950s–1980s) Multi-channel transition (1980s–1990s) Second Golden Age a...

 

Roman Catholic church in Ávila, Spain Church in Ávila, SpainÁvila CathedralCathedral of the SaviourCatedral del SalvadorWest façade in 2023.40°39′21″N 4°41′50″W / 40.6558°N 4.6972°W / 40.6558; -4.6972LocationÁvilaAddress8, Plaza de la CatedralCountrySpainDenominationCatholicWebsitecatedralavila.comHistoryStatusCathedralDedicationSalvator MundiArchitectureArchitect(s)Giral FruchelStyleGothicGroundbreaking1170SpecificationsLength85 m (278 ft 10...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) لويس جيامبيتري (بالإسبانية: Luis Giampietri)‏  مناصب عضو مجلس الشيوخ البيروفي[1][2]   في المنصب27 يوليو 2006  – 26 يوليو 2011  نائب رئيس بيرو   في المنصب2...

 

Cet article est une ébauche concernant l’athlétisme et l’Inde. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Championnats d'Asie d'athlétisme 2017 Généralités Sport Athlétisme Organisateur(s) AAA Édition 22e Lieu(x) Bhubaneswar, Inde Date 6 au 9 juillet 2017 Nations 41 Participants 560 Épreuves 42 Site(s) Kalinga Stadium Navigation 1973 • 1975 • 1979 • 1981 • 1983 • 1985 • 1987...

 

Secondary school in Jerusalem (1918-1948) The college during a sports event in 1942 The Arab College in Jerusalem was a secondary school in British Mandatory Palestine. The Arab College existed from 1918 until 1948, when it was swept away during the 1948 Arab–Israeli War. The British administration began an education system in the former Ottoman lands which consisted of primary schools in the largest towns and a boarding secondary school, the Government Arab College, in Jerusalem. Initially...

Dieser Artikel behandelt die deutsche Offensive von 1918. Für den gleichnamigen Film siehe Unternehmen Michael (Film). Unternehmen Michael Teil von: Deutsche Frühjahrsoffensive 1918 Datum 21. März bis 6. April 1918 Ort Nordfrankreich, Gebiet an der Somme Ausgang Deutscher Vormarsch läuft fest, wird abgebrochen. Konfliktparteien Deutsches Reich Deutsches Reich Vereinigtes Konigreich 1801 Vereinigtes KönigreichDritte Französische Republik Frankreich Befehlshaber Deutsches ...

 

Law describing the pressure drop in an incompressible and Newtonian fluid Part of a series onContinuum mechanics J = − D d φ d x {\displaystyle J=-D{\frac {d\varphi }{dx}}} Fick's laws of diffusion Laws Conservations Mass Momentum Energy Inequalities Clausius–Duhem (entropy) Solid mechanics Deformation Elasticity linear Plasticity Hooke's law Stress Strain Finite strain Infinitesimal strain Compatibility Bending Contact mechanics frictional Material failure theory Fracture mec...