Immunosenescence is the gradual deterioration of the immune system, brought on by natural age advancement. A 2020 review concluded that the adaptive immune system is affected more than the innate immune system.[1] Immunosenescence involves both the host's capacity to respond to infections and the development of long-term immune memory. Age-associated immune deficiency is found in both long- and short-lived species as a function of their age relative to life expectancy rather than elapsed time.[2]
It has been studied in animal models including mice, marsupials and monkeys.[3][4][5] Immunosenescence is a contributory factor to the increased frequency of morbidity and mortality among the elderly. Along with anergy and T-cell exhaustion, immunosenescence belongs among the major immune system dysfunctional states. However, while T-cell anergy is a reversible condition, as of 2020 no techniques for immunosenescence reversal had been developed.[6][7]
Immunosenescence is not a random deteriorative phenomenon, rather it appears to inversely recapitulate an evolutionary pattern. Most of the parameters affected by immunosenescence appear to be under genetic control.[8] Immunosenescence can be envisaged as the result of the continuous challenge of the unavoidable exposure to a variety of antigens such as viruses and bacteria.[9]
Age-associated decline in immune function
Aging of the immune system is a controversial phenomenon. Senescence refers to replicative senescence from cell biology, which describes the condition when the upper limit of cell divisions (Hayflick limit) has been exceeded, and such cells commit apoptosis or lose their functional properties. Immunosenescence generally means a robust shift in both structural and functional parameters that has a clinically relevant outcome.[10]Thymus involution is probably the most relevant factor responsible for immunosenescence. Thymic involution is common in most mammals; in humans it begins after puberty, as the immunological defense against most novel antigens is necessary mainly during infancy and childhood.[11]
The major characteristic of the immunosenescent phenotype is a shift in T-cell subpopulation distribution. As the thymus involutes, the number of naive T cells (especially CD8+) decreases, thus naive T cells homeostatically proliferate into memory T cells as a compensation.[5] It is believed that the conversion to memory phenotype can be accelerated by restimulation of the immune system by persistent pathogens such as CMV and HSV. By age 40, an estimated 50% to 85% of adults have contracted human cytomegalovirus (HCMV).[1] Recurring infections by latent herpes viruses can exhaust the immune system of elderly persons.[12] Consistent, repeated stimulation by such pathogens leads to preferential differentiation of the T-cell memory phenotype, and a 2020 review reported that CD8+ T-cell precursors, specific for the most rare and less frequently present antigens shed the most.[5] Such a distribution shift leads to increased susceptibility to non-persistent infection, cancer, autoimmune diseases, cardiovascular health conditions and many others.[13][14]
T cells are not the only immune cells affected by aging:
Hematopoietic stem cells (HSC), which provide the regulated lifelong supply of leukocyte progenitors that differentiate into specialised immune cells diminish in their self-renewal capacity.[15] This is due to the accumulation of oxidative damage to DNA by aging and cellular metabolic activity[16] and telomeric shortening.
In addition to changes in immune responses, the beneficial effects of inflammation devoted to the neutralisation of dangerous and harmful agents early in life and in adulthood become detrimental late in life in a period largely not foreseen by evolution, according to the antagonistic pleiotropy theory of aging.[25] Changes in the lymphoid compartment are not solely responsible for the malfunctioning of the immune system. Although myeloid cell production does not seem to decline with age, macrophages become dysregulated as a consequence of environmental changes.[26]
T-cell biomarkers of age-dependent dysfunction
T cells' functional capacity is most influenced by aging effects. Age-related alterations are evident in all T-cell development stages, making them a significant factor in immunosenescence.[27] T-cell function decline begins with the progressive involution of the thymus, which is the organ essential for T-cell maturation. This decline in turn reduces IL-2 production[28][29] and reduction/exhaustion on the number of thymocytes (i.e. immature T cells), thus reducing peripheral naïve T cell output.[30][31] Once matured and circulating throughout the peripheral system, T cells undergo deleterious age-dependent changes. This leaves the body practically devoid of virgin T cells, which makes it more prone to a variety of diseases.[9]
down-regulation of CD28 costimulatory molecules[40]
cytotoxic activity of Natural Killer T cells (NKTs) decreases[20] due to reduction of the expression of cytotoxicity activating receptors (NKp30, NKp46, etc.) and (simultaneously) increase in the expression of the inhibitory (KIR, NKG2C, etc.) receptors of NK cells[41]
reduction of cytotoxic activity due to impaired expression of associated molecules such as IFN-γ, granzyme B or perforin[42][6]
impaired proliferation in response to antigenic stimulation[36][33][38][39]
accumulation and clonal expansion of memory and effector T cells[8][33]
glycolysis as a preferential pathway of energetic metabolism - functionally impaired mitochondria produce ROS excessively[45]
presence of T cell-specific biomarkers of senescence (circular RNA100783, micro-RNAs MiR-181a)[46][47]
Challenges
The elderly frequently present with non-specific signs and symptoms, and clues of focal infection are often absent or obscured by chronic conditions.[2] This complicates diagnosis and treatment.
Vaccination in the elderly
The reduced efficacy of vaccination in the elderly stems from their restricted ability to respond to immunization with novel non-persistent pathogens, and correlates with both CD4:CD8 alterations and impaired dendritic cell function.[48] Therefore, vaccination in earlier life stages seems more likely to be effective, although the duration of the effect varies by pathogen.[49][10]
Rescue of the advanced-age phenotype
Removal of senescent cells with senolytic compounds has been proposed as a method of enhancing immunity during aging.[50]
Immune system aging in mice can be partly restricted by restoring thymus growth, which can be achieved by transplantation of proliferative thymic epithelial cells from young mice.[51]Metformin has been proven to moderate aging in preclinical studies.[52] Its protective effect is probably caused primarily by impaired mitochondria metabolism, particularly decreased reactive oxygen production[53] or increased AMP:ATP ratio[54] and lower NAD/NADH ratio. Coenzyme NAD+ is reduced in various tissues in an age-dependent manner, and thus redox potential associated changes seem to be critical in the aging process,[55] and NAD+ supplements may have protective effects.[56]Rapamycin, an antitumor and immunosuppresant, acts similarly.[57]
^ abcFranceschi C, Valensin S, Fagnoni F, Barbi C, Bonafè M (December 1999). "Biomarkers of immunosenescence within an evolutionary perspective: the challenge of heterogeneity and the role of antigenic load". Experimental Gerontology. 34 (8): 911–921. doi:10.1016/S0531-5565(99)00068-6. PMID10673145. S2CID32614875.
^ abFranceschi C, Bonafè M, Valensin S (February 2000). "Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space". Vaccine. 18 (16): 1717–1720. doi:10.1016/S0264-410X(99)00513-7. PMID10689155.
^Haq K, McElhaney JE (August 2014). "Immunosenescence: Influenza vaccination and the elderly". Current Opinion in Immunology. 29: 38–42. doi:10.1016/j.coi.2014.03.008. PMID24769424.
^Monga I, Kaur K, Dhanda S (March 2022). "Revisiting hematopoiesis: applications of the bulk and single-cell transcriptomics dissecting transcriptional heterogeneity in hematopoietic stem cells". Briefings in Functional Genomics. 21 (3): 159–176. doi:10.1093/bfgp/elac002. PMID35265979.
^
High frequency electromagnetic waves such as gamma and xrays can penetrate and damage DNA. Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I, et al. (October 2004). "Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells". Nature. 431 (7011): 997–1002. Bibcode:2004Natur.431..997I. doi:10.1038/nature02989. PMID15496926. S2CID4370804.
^Lord JM, Butcher S, Killampali V, Lascelles D, Salmon M (September 2001). "Neutrophil ageing and immunesenescence". Mechanisms of Ageing and Development. 122 (14): 1521–1535. doi:10.1016/S0047-6374(01)00285-8. PMID11511394. S2CID1898942.
^Uyemura K, Castle SC, Makinodan T (April 2002). "The frail elderly: role of dendritic cells in the susceptibility of infection". Mechanisms of Ageing and Development. 123 (8): 955–962. doi:10.1016/S0047-6374(02)00033-7. PMID12044944. S2CID11558962.
^Linton PJ, Lustgarten J, Thoman M (2006). "T cell function in the aged: Lessons learned from animal models". Clinical and Applied Immunology Reviews. 6 (2): 73–97. doi:10.1016/j.cair.2006.06.001.
^Fülöp T, Gagné D, Goulet AC, Desgeorges S, Lacombe G, Arcand M, Dupuis G (April 1999). "Age-related impairment of p56lck and ZAP-70 activities in human T lymphocytes activated through the TcR/CD3 complex". Experimental Gerontology. 34 (2): 197–216. doi:10.1016/S0531-5565(98)00061-8. PMID10363787. S2CID42659829.
^Tahir S, Fukushima Y, Sakamoto K, Sato K, Fujita H, Inoue J, et al. (June 2015). "A CD153+CD4+ T follicular cell population with cell-senescence features plays a crucial role in lupus pathogenesis via osteopontin production". Journal of Immunology. 194 (12): 5725–5735. doi:10.4049/jimmunol.1500319. hdl:2433/202671. PMID25972477. S2CID12736294.