Motion of an object with constant proper acceleration in special relativity.
Hyperbolic motion is the motion of an object with constant proper acceleration in special relativity. It is called hyperbolic motion because the equation describing the path of the object through spacetime is a hyperbola, as can be seen when graphed on a Minkowski diagram whose coordinates represent a suitable inertial (non-accelerated) frame. This motion has several interesting features, among them that it is possible to outrun a photon if given a sufficient head start, as may be concluded from the diagram.[1]
History
Hermann Minkowski (1908) showed the relation between a point on a worldline and the magnitude of four-acceleration and a "curvature hyperbola" (German: Krümmungshyperbel).[2] In the context of Born rigidity, Max Born (1909) subsequently coined the term "hyperbolic motion" (German: Hyperbelbewegung) for the case of constant magnitude of four-acceleration, then provided a detailed description for charged particles in hyperbolic motion, and introduced the corresponding "hyperbolically accelerated reference system" (German: hyperbolisch beschleunigtes Bezugsystem).[3] Born's formulas were simplified and extended by Arnold Sommerfeld (1910).[4] For early reviews see the textbooks by Max von Laue (1911, 1921)[5] or Wolfgang Pauli (1921).[6] See also Galeriu (2015)[7] or Gourgoulhon (2013),[8] and Acceleration (special relativity)#History.
where is the instantaneous speed of the particle, the Lorentz factor, is the speed of light, and is the coordinate time. Solving for the equation of motion gives the desired formulas, which can be expressed in terms of coordinate time as well as proper time. For simplification, all initial values for time, location, and velocity can be set to 0, thus:[5][6][9][10][11]
1
This gives , which is a hyperbola in time T and the spatial location variable . In this case, the accelerated object is located at at time . If instead there are initial values different from zero, the formulas for hyperbolic motion assume the form:[12][13][14]
Rapidity
The worldline for hyperbolic motion (which from now on will be written as a function of proper time) can be simplified in several ways. For instance, the expression
can be subjected to a spatial shift of amount , thus
by which the observer is at position at time . Furthermore, by setting and introducing the rapidity,[14] the equations for hyperbolic motion reduce to[4][16]
This is related to the controversially[20][21] discussed question, whether charges in perpetual hyperbolic motion do radiate or not, and whether this is consistent with the equivalence principle – even though it is about an ideal situation, because perpetual hyperbolic motion is not possible. While early authors such as Born (1909) or Pauli (1921) argued that no radiation arises, later authors such as Bondi & Gold[17] and Fulton & Rohrlich[18][19] showed that radiation does indeed arise.
In equation (2) for hyperbolic motion, the expression was constant, whereas the rapidity was variable. However, as pointed out by Sommerfeld,[16] one can define as a variable, while making constant. This means, that the equations become transformations indicating the simultaneous rest shape of an accelerated body with hyperbolic coordinates as seen by a comoving observer
By means of this transformation, the proper time becomes the time of the hyperbolically accelerated frame. These coordinates, which are commonly called Rindler coordinates (similar variants are called Kottler-Møller coordinates or Lass coordinates), can be seen as a special case of Fermi coordinates or Proper coordinates, and are often used in connection with the Unruh effect. Using these coordinates, it turns out that observers in hyperbolic motion possess an apparent event horizon, beyond which no signal can reach them.
Special conformal transformation
A lesser known method for defining a reference frame in hyperbolic motion is the employment of the special conformal transformation, consisting of an inversion, a translation, and another inversion.[22] It is commonly interpreted as a gauge transformation in Minkowski space, though some authors alternatively use it as an acceleration transformation (see Kastrup for a critical historical survey).[23] It has the form
Using only one spatial dimension by , and further simplifying by setting , and using the acceleration , it follows[24]
with the hyperbola . It turns out that at the time becomes singular, to which Fulton & Rohrlich & Witten[24] remark that one has to stay away from this limit, while Kastrup[23] (who is very critical of the acceleration interpretation) remarks that this is one of the strange results of this interpretation.
^ abcvon Laue, M. (1921). Die Relativitätstheorie, Band 1 (fourth edition of "Das Relativitätsprinzip" ed.). Vieweg. pp. 89–90, 155–166.; First edition 1911, second expanded edition 1913, third expanded edition 1919.
^ abSommerfeld (1910), pp. 670-671 used the form and with the imaginary angle and imaginary time .
^ abBondi, H., & Gold, T. (1955). "The field of a uniformly accelerated charge, with special reference to the problem of gravitational acceleration". Proceedings of the Royal Society of London. 229 (1178): 416–424. Bibcode:1955RSPSA.229..416B. doi:10.1098/rspa.1955.0098. S2CID121563673.{{cite journal}}: CS1 maint: multiple names: authors list (link)
Leigh Page & Norman I. Adams (Mar 1936). "A New Relativity. Paper II. Transformation of the Electromagnetic Field Between Accelerated Systems and the Force Equation". Physical Review. 49 (6): 466–469. Bibcode:1936PhRv...49..466P. doi:10.1103/PhysRev.49.466.
Naber, Gregory L., The Geometry of Minkowski Spacetime, Springer-Verlag, New York, 1992. ISBN0-387-97848-8 (hardcover), ISBN0-486-43235-1 (Dover paperback edition). pp 58–60.
Eurocopter TigerEurocopter Tiger milik Angkatan Darat JermanTipeHelikopter serbuProdusenAirbus Helicopters (sebelumnya EurocopterTerbang perdana27 April 1991Diperkenalkan2003StatusAktifPengguna utamaAngkatan Darat PrancisAngkatan Darat JermanAngkatan Darat AustraliaAngkatan Darat SpanyolTahun produksi1991–sekarangJumlah produksi180 per Juli 2019Eurocopter Tiger adalah helikopter serbu empat bilah, bermesin ganda yang pertama kali beroperasi pada tahun 2003. Diproduksi oleh Airbus Helicopter...
Asaccus Asaccus elisae Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Subfilum: Vertebrata Kelas: Reptilia Ordo: Squamata Subordo: Lacertilia Infraordo: Gekkota Famili: Phyllodactylidae Genus: AsaccusDixon & S. Anderson, 1973[1] Species 16 Asaccus adalah genus dari tokek yang biasa dikenal sebagai Tokek ujung daun Asia barat daya.[2] Jangkauan geografis Genus Asaccus merupakan fauna endemik di Timur Tengah.[2] Spesies Ada 16 spesies dalam genus ini.[3...
Bulan di Atas MentariGenre Drama Roman PembuatMD EntertainmentDitulis oleh Aviv Elham Keke Mayang Skenario Aviv Elham Keke Mayang SutradaraAkbar BhaktiPemeran Marcel Chandrawinata Tatjana Saphira Fendy Chow Michella Putri Primus Yustisio Febby Febiola Penggubah lagu temaSM*SHLagu pembukaAku Cinta Kau dan Dia — SM*SHLagu penutupAku Cinta Kau dan Dia — SM*SHNegara asalIndonesiaBahasa asliBahasa IndonesiaJmlh. musim1Jmlh. episode25 (daftar episode)ProduksiProduser Dhamoo Punjabi Manoj Punja...
American docu-series on Netflix This article is about the Netflix documentary which explores the missing-person case. For the case itself, see Disappearance of Madeleine McCann. The Disappearance of Madeleine McCannGenreDocu-seriesDirected byChris SmithStarringAnthony SummersGonçalo AmaralRobbyn SwanOriginal languageEnglishNo. of seasons1No. of episodes8ProductionRunning time43-65 minutesProduction companies Pulse Films Paramount Television Original releaseNetworkNetflixReleaseMarch 15,...
25°06′N 76°31′E / 25.1°N 76.52°E / 25.1; 76.52 Baran Baran Negara Bagian - Distrik Rajasthan - Baran Koordinat 25°06′N 76°31′E / 25.1°N 76.52°E / 25.1; 76.52 Luas - Ketinggian - 262 m Zona waktu IST (UTC+5:30) Populasi (2001) - Kepadatan 78372 - Kode - Pos - Telepon - Kendaraan - 32520X - +07453 -&...
هذه المقالة عن تجمع دول الساحل والصحراء. لتصفح عناوين مشابهة، انظر ساحل (توضيح). تجمع دول الساحل والصحراء تاريخ التأسيس 1998 الموقع الرسمي الموقع الرسمي تعديل مصدري - تعديل تجمع دول الساحل والصحراء أو (س.[1] ص) تأسس في 4 فبراير 1998 بطرابلس، ليبيا، أثر مؤتمر القمة ال�...
Ini adalah nama Batak Toba, marganya adalah Manurung. Saur Marlina ManurungMAAPDLahirSaur Marlina Manurung21 Februari 1972 (umur 52)Jakarta, IndonesiaKebangsaanIndonesiaNama lainButet ManurungWarga negaraIndonesiaAlmamater Universitas Padjajaran Universitas Nasional Australia University of Amsterdam PekerjaanAktivis, antropologTahun aktif1999 - SekarangDikenal atasPerintis dan pelaku pendidikan alternatif bagi masyarakat terasing dan terpencil di Indonesia Saur Marlina Manurung...
Invasi Jin Akhir ke JoseonBagian dari Konflik Korea–Jurchen, Penaklukan Ming oleh QingTanggalJanuari - 3 Maret 1627LokasiSemenanjung Korea UtaraHasil Kemenangan Jin AkhirPihak terlibat JoseonDinasti Ming Jin AkhirTokoh dan pemimpin Joseon: Jeong Bong-suYi RipJang ManKim Sang-yong Dinasti Ming:Mao Wenlong Amin Gang Hong-ripJirgalangAjigeYotoLi Yongfang 李永芳Kekuatan Tidak diketahui 30.000[1]Korban Tidak diketahui Tidak diketahui lbsPeralihan dari Ming ke Qing Fushun Qinghe Sarhū...
Peta infrastruktur dan tata guna lahan di Komune Ris-Orangis. = Kawasan perkotaan = Lahan subur = Padang rumput = Lahan pertanaman campuran = Hutan = Vegetasi perdu = Lahan basah = Anak sungaiRis-OrangisNegaraPrancisArondisemenÉvryAntarkomuneCommunautéd'agglomérationÉvry Centre Essonne Ris-Orangis merupakan sebuah komune di pinggiran selatan Paris, Prancis. Terletak 22.6 km (14 mil) dari pusat kota Paris. Sejarah Komune Ris-Orangis didi...
Voce principale: Empoli Football Club. Dopolavoro EmpoleseStagione 1937-1938Sport calcio Squadra Empolese Allenatore Francesco Profumo Presidente Antonio Del Vivo Serie C9º posto nel girone D. 1936-1937 1938-1939 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti il Dopolavoro Empolese nelle competizioni ufficiali della stagione 1937-1938. Rosa N. Ruolo Calciatore P Ascanio Assirelli Ademaro Benetti C Emilio Cantini Ernesto Carrai Giuseppe Carrara ...
Соединённое Королевство Великобритании и Северной Ирландии, кратко именуемое Соединённым королевством или Великобританией, состоит из четырех «исторических стран» (англ. countries): Англии, Шотландии, Уэльса и Северной Ирландии. Каждая страна Соединённого Королевства и...
Peta infrastruktur dan tata guna lahan di Komune Fresse-sur-Moselle. = Kawasan perkotaan = Lahan subur = Padang rumput = Lahan pertanaman campuran = Hutan = Vegetasi perdu = Lahan basah = Anak sungaiFresse-sur-Moselle merupakan sebuah komune di departemen Vosges yang terletak pada sebelah timur laut Prancis. Lihat pula Komune di departemen Vosges Referensi INSEE Diarsipkan 2007-11-24 di Wayback Machine. lbsKomune di departemen Vosges Les Ableuve...
Brazilian poet, playwright and painter (1806–1879) This article is about the Brazilian poet, playwright and painter. For the Mozambican politician, see Manuel de Araújo. Baron of Santo ÂngeloPorto-Alegre by Ferdinand Krumholz, c. 1848BornManuel José de Araújo(1806-11-29)29 November 1806Rio Pardo, Colonial BrazilDied30 December 1879(1879-12-30) (aged 73)Lisbon, Kingdom of PortugalPen nameTibúrcio do AmaranteOccupationWriter, painter, caricaturist, professor, diplomat, architectAlma...
Halaman ini berisi artikel tentang album Super Junior. Untuk lagu, lihat Sexy, Free & Single (lagu). Sexy, Free & SingleAlbum studio karya Super JuniorDirilis04 Juli 2012 (2012-07-04)DirekamMei - Juni 2012 di SM Studios, Seoul, Korea SelatanGenreK-pop, R&B, electropop, dance, rap, EurohouseDurasi35:38BahasaKoreanLabelSM EntertainmentKMP HoldingsProduserLee Soo-manKronologi Super Junior Mr. Simple(2011)Mr. Simple2011 Sexy, Free & Single(2012) Hero (2013)Hero2013 Singel...
Federico Guillermo III Rey de Prusia Rey de Prusia 16 de noviembre de 1797 - 7 de junio de 1840 (42 años, 6 meses y 21 días)Predecesor Federico Guillermo IISucesor Federico Guillermo IVElector de Brandeburgo 16 de noviembre de 1797 - 6 de agosto de 1806Predecesor Federico Guillermo IISucesor Desaparición del Sacro ImperioInformación personalOtros títulos Gran Duque de PosenNacimiento 3 de agosto de 1770Potsdam, Reino de PrusiaFallecimiento 7 de junio de 1840(69 años)Berl�...
هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (أكتوبر 2017) فرانك فريدركس (بالإنجليزية: Frankie Fredericks) معلومات شخصية الميلاد 2 أكتوبر...