Born rigidity

Born rigidity is a concept in special relativity. It is one answer to the question of what, in special relativity, corresponds to the rigid body of non-relativistic classical mechanics.

The concept was introduced by Max Born (1909),[1][2] who gave a detailed description of the case of constant proper acceleration which he called hyperbolic motion. When subsequent authors such as Paul Ehrenfest (1909)[3] tried to incorporate rotational motions as well, it became clear that Born rigidity is a very restrictive sense of rigidity, leading to the Herglotz–Noether theorem, according to which there are severe restrictions on rotational Born rigid motions. It was formulated by Gustav Herglotz (1909, who classified all forms of rotational motions)[4] and in a less general way by Fritz Noether (1909).[5] As a result, Born (1910)[6] and others gave alternative, less restrictive definitions of rigidity.

Definition

Born rigidity is satisfied if the orthogonal spacetime distance between infinitesimally separated curves or worldlines is constant,[7] or equivalently, if the length of the rigid body in momentary co-moving inertial frames measured by standard measuring rods (i.e. the proper length) is constant and is therefore subjected to Lorentz contraction in relatively moving frames.[8] Born rigidity is a constraint on the motion of an extended body, achieved by careful application of forces to different parts of the body. A body that could maintain its own rigidity would violate special relativity, as its speed of sound would be infinite.

A classification of all possible Born rigid motions can be obtained using the Herglotz–Noether theorem. This theorem states that all irrotational Born rigid motions (class A) consist of hyperplanes rigidly moving through spacetime, while any rotational Born rigid motion (class B) must be an isometric Killing motion. This implies that a Born rigid body only has three degrees of freedom. Thus a body can be brought in a Born rigid way from rest into any translational motion, but it cannot be brought in a Born rigid way from rest into rotational motion.[9]

Stresses and Born rigidity

It was shown by Herglotz (1911),[10] that a relativistic theory of elasticity can be based on the assumption, that stresses arise when the condition of Born rigidity is broken.[11]

An example of breaking Born rigidity is the Ehrenfest paradox: Even though the state of uniform circular motion of a body is among the allowed Born rigid motions of class B, a body cannot be brought from any other state of motion into uniform circular motion without breaking the condition of Born rigidity during the phase in which the body undergoes various accelerations. But if this phase is over and the centripetal acceleration becomes constant, the body can be uniformly rotating in agreement with Born rigidity. Likewise, if it is now in uniform circular motion, this state cannot be changed without again breaking the Born rigidity of the body.

Another example is Bell's spaceship paradox: If the endpoints of a body are accelerated with constant proper accelerations in rectilinear direction, then the leading endpoint must have a lower proper acceleration in order to leave the proper length constant so that Born rigidity is satisfied. It will also exhibit an increasing Lorentz contraction in an external inertial frame, that is, in the external frame the endpoints of the body are not accelerating simultaneously. However, if a different acceleration profile is chosen by which the endpoints of the body are simultaneously accelerated with same proper acceleration as seen in the external inertial frame, its Born rigidity will be broken, because constant length in the external frame implies increasing proper length in a comoving frame due to relativity of simultaneity. In this case, a fragile thread spanned between two rockets will experience stresses (which are called Herglotz–Dewan–Beran stresses[8]) and will consequently break.

Born rigid motions

A classification of allowed, in particular rotational, Born rigid motions in flat Minkowski spacetime was given by Herglotz,[4] which was also studied by Friedrich Kottler (1912, 1914),[12] Georges Lemaître (1924),[13] Adriaan Fokker (1940),[14] George Salzmann & Abraham H. Taub (1954).[7] Herglotz pointed out that a continuum is moving as a rigid body when the world lines of its points are equidistant curves in . The resulting worldliness can be split into two classes:

Class A: Irrotational motions

Herglotz defined this class in terms of equidistant curves which are the orthogonal trajectories of a family of hyperplanes, which also can be seen as solutions of a Riccati equation[15] (this was called "plane motion" by Salzmann & Taub[7] or "irrotational rigid motion" by Boyer[16][17]). He concluded, that the motion of such a body is completely determined by the motion of one of its points.

The general metric for these irrotational motions has been given by Herglotz, whose work was summarized with simplified notation by Lemaître (1924). Also the Fermi metric in the form given by Christian Møller (1952) for rigid frames with arbitrary motion of the origin was identified as the "most general metric for irrotational rigid motion in special relativity".[18] In general, it was shown that irrotational Born motion corresponds to those Fermi congruences of which any worldline can be used as baseline (homogeneous Fermi congruence).[19]

Herglotz
1909
[20]
Lemaître
1924
[21]
Møller
1952
[22]

Already Born (1909) pointed out that a rigid body in translational motion has a maximal spatial extension depending on its acceleration, given by the relation , where is the proper acceleration and is the radius of a sphere in which the body is located, thus the higher the proper acceleration, the smaller the maximal extension of the rigid body.[2] The special case of translational motion with constant proper acceleration is known as hyperbolic motion, with the worldline

Born
1909
[23]
Herglotz
1909
[24]

[25]

Sommerfeld
1910
[26]
Kottler
1912, 1914
[27]

[28]

Class B: Rotational isometric motions

Herglotz defined this class in terms of equidistant curves which are the trajectories of a one-parameter motion group[29] (this was called "group motion" by Salzmann & Taub[7] and was identified with isometric Killing motion by Felix Pirani & Gareth Williams (1962)[30]). He pointed out that they consist of worldlines whose three curvatures are constant (known as curvature, torsion and hypertorsion), forming a helix.[31] Worldlines of constant curvatures in flat spacetime were also studied by Kottler (1912),[12] Petrův (1964),[32] John Lighton Synge (1967, who called them timelike helices in flat spacetime),[33] or Letaw (1981, who called them stationary worldlines)[34] as the solutions of the Frenet–Serret formulas.

Herglotz further separated class B using four one-parameter groups of Lorentz transformations (loxodromic, elliptic, hyperbolic, parabolic) in analogy to hyperbolic motions (i.e. isometric automorphisms of a hyperbolic space), and pointed out that Born's hyperbolic motion (which follows from the hyperbolic group with in the notation of Herglotz and Kottler, in the notation of Lemaître, in the notation of Synge; see the following table) is the only Born rigid motion that belongs to both classes A and B.

Loxodromic group (combination of hyperbolic motion and uniform rotation)
Herglotz
1909
[35]
Kottler
1912, 1914
[36]
Lemaître
1924
[37]
Synge
1967
[38]
Elliptic group (uniform rotation)
Herglotz
1909
[39]
Kottler
1912, 1914
[40]
de Sitter
1916
[41]
Lemaître
1924
[42]
Synge
1967
[43]
Hyperbolic group (hyperbolic motion plus spacelike translation)
Herglotz
1909
[44]
Kottler
1912, 1914
[45]
Lemaître
1924
[46]
Synge
1967
[47]
Parabolic group (describing a semicubical parabola)
Herglotz
1909
[25]
Kottler
1912, 1914
[48]
Lemaître
1924
[37]
Synge
1967
[49]

General relativity

Attempts to extend the concept of Born rigidity to general relativity have been made by Salzmann & Taub (1954),[7] C. Beresford Rayner (1959),[50] Pirani & Williams (1962),[30] Robert H. Boyer (1964).[16] It was shown that the Herglotz–Noether theorem is not completely satisfied, because rigid rotating frames or congruences are possible which do not represent isometric Killing motions.[30]

Alternatives

Several weaker substitutes have also been proposed as rigidity conditions, such as by Noether (1909)[5] or Born (1910) himself.[6]

A modern alternative was given by Epp, Mann & McGrath.[51] In contrast to the ordinary Born rigid congruence consisting of the "history of a spatial volume-filling set of points", they recover the six degrees of freedom of classical mechanics by using a quasilocal rigid frame by defining a congruence in terms of the "history of the set of points on the surface bounding a spatial volume".

References

  1. ^ Born (1909a)
  2. ^ a b Born (1909b)
  3. ^ Ehrenfest (1909)
  4. ^ a b Herglotz (1909)
  5. ^ a b Noether (1909)
  6. ^ a b Born (1910)
  7. ^ a b c d e Salzmann & Taub (1954)
  8. ^ a b Gron (1981)
  9. ^ Giulini (2008)
  10. ^ Herglotz (1911)
  11. ^ Pauli (1921)
  12. ^ a b Kottler (1912); Kottler (1914a)
  13. ^ Lemaître (1924)
  14. ^ Fokker (1940)
  15. ^ Herglotz (1909), pp. 401, 415
  16. ^ a b Boyer (1965)
  17. ^ Giulini (2008), Theorem 18
  18. ^ Boyer (1965), p. 354
  19. ^ Bel (1995), theorem 2
  20. ^ Herglotz (1909), p. 401
  21. ^ Lemaître (1924), p. 166, 170
  22. ^ (1952), p. 254
  23. ^ Born (1909), p. 25
  24. ^ Herglotz (1909), p. 408
  25. ^ a b Herglotz (1909), p. 414
  26. ^ Sommerfled (1910), p. 670
  27. ^ Kottler (1912), p. 1714; Kottler (1914a), table 1, case IIIb
  28. ^ Kottler (1914b), p. 488
  29. ^ Herglotz (1909), pp. 402, 409-415
  30. ^ a b c Pirani & Willims (1962)
  31. ^ Herglotz (1909), p. 403
  32. ^ Petrův (1964)
  33. ^ Synge (1967)
  34. ^ Letaw (1981)
  35. ^ Herglotz (1909), p. 411
  36. ^ Kottler (1912), p. 1714; Kottler (1914a), table 1, case I
  37. ^ a b Lemaître (1924), p. 175
  38. ^ Synge (1967), Type I
  39. ^ Herglotz (1909), p. 412
  40. ^ Kottler (1912), p. 1714; Kottler (1914a), table 1, case IIb
  41. ^ DeSitter (1916), p. 178
  42. ^ Lemaître (1924), p. 173
  43. ^ Synge (1967), Type IIc
  44. ^ Herglotz (1909), p. 413
  45. ^ Kottler (1912), p. 1714; Kottler (1914a), table 1, case IIIa
  46. ^ Lemaître (1924), p. 174
  47. ^ Synge (1967), Type IIa
  48. ^ Kottler (1912), p. 1714; Kottler (1914a), table 1, case IV
  49. ^ Synge (1967), Type IIb
  50. ^ Rayner (1959)
  51. ^ Epp, Mann & McGrath (2009)

Bibliography

In English: Pauli, W. (1981) [1921]. Theory of Relativity. Vol. 165. Dover Publications. ISBN 0-486-64152-X. {{cite book}}: |journal= ignored (help)

Read other articles:

SC Trestina ASDCalcio Bianconeri, Pinguini Segni distintivi Uniformi di gara Casa Trasferta Terza divisa Colori sociali Bianco, nero Dati societari Città Città di Castello (Trestina) Nazione  Italia Confederazione UEFA Federazione FIGC Campionato Serie D Fondazione 1950 Presidente Leonardo Bambini Allenatore Simone Marmorini Stadio Lorenzo Casini[1](800 posti) Sito web sportingclubtrestina.net Palmarès Si invita a seguire il modello di voce Lo Sporting Club Trestina A.S.D., m...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Festival Kotagede adalah kegiatan atau acara seni dan budaya tahunan yang diadakan di daerah Kotagede, Yogyakarta. Festival Kotagede ini pertama kali diselenggarakan pada tahun 1999. Festival ini diadakan sebagai wadah untuk pengembangan seni budaya, p...

 

Niue Football AssociationOFCDidirikan2021; 3 tahun lalu (2021)Bergabung dengan FIFAN/ABergabung dengan OFCN/APresidenDeve Talagi[1] Asosiasi Sepak Bola Niue adalah badan yang mengatur kegiatan sepak bola di Niue. Asosiasi ini didirikan pada tahun 2021 sebagai penerus Asosiasi Sepak Bola Pulau Niue yang sekarang sudah tidak ada lagi. Presiden saat ini adalah Deve Talagi. Sejarah Pada bulan Maret 2021, setelah sepuluh tahun tidak aktif, Asosiasi Sepak Bola Pulau Niue dikeluarkan da...

Lambang Warennes dari Surrey Earl Surrey merupakan sebuah gelar di Inggris yang telah diciptakan sebanyak lima kali. Ciptaan pertama dibuat oleh William de Warenne, orang dekat William Sang Penakluk. Saat ini gelar tersebut dipegang sebagai gelar tambahan oleh Adipati Norfolk. Pranala luar Medieval Lands Project on the Earls of Surrey

 

SantoAbbánKapel St Cormac, kapel Kristen di Eilean Mòr, Jura, di Kepulauan MacCormaig (Skotlandia). Seperti Gereja Keills (Kilvickocharmick) di daratan Skotlandia, mungkin dikaitkan dengan Abbán.[1]Eibbán, MoabbaMeninggal520?Pesta16 Maret dan 27 Oktober13 Mei – Gereja Ortodoks Timur[2]PelindungMag Arnaide (Adamstown, Co. Wexford), Cell Abbáin (Killabban, Co. Laois), dll. Abbán moccu Corbmaic (bahasa Latin: Abbanus; †520? M), juga Eibbán atau Moabba, merupakan se...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

Commuter rail station in Bensenville, Illinois BensenvilleBensenville station in August 2023.General informationLocation110 West Main StreetBensenville, IllinoisCoordinates41°57′25″N 87°56′30″W / 41.9569°N 87.9418°W / 41.9569; -87.9418Owned byMetraPlatforms2 side platformsTracks2Connections Pace BusesConstructionAccessibleYesOther informationFare zone3HistoryRebuilt1989Passengers2018414 (average weekday)[1]  16%Rank115 out of 236[...

 

American judge Thomas Jefferson BoyntonJudge of the United States District Court for the Southern District of FloridaIn officeOctober 19, 1863 – January 1, 1870Appointed byAbraham LincolnPreceded byWilliam MarvinSucceeded byJohn McKinney Personal detailsBornThomas Jefferson Boynton(1838-08-31)August 31, 1838Amherst, OhioDiedMay 2, 1871(1871-05-02) (aged 32)New York City, New YorkEducationread law Thomas Jefferson Boynton (August 31, 1838 – May 2, 1871) was a United States di...

 

National badminton team representing South Africa South AfricaAssociationBadminton South Africa (BSA)ConfederationBCA (Africa)PresidentGretha PrinslooBWF rankingCurrent ranking34 3 (2 January 2024)Highest ranking23 (5 April 2012)Sudirman CupAppearances9 (first in 1997)Best resultGroup stageThomas CupAppearances4 (first in 2004)Best resultGroup stageUber CupAppearances5 (first in 2004)Best resultGroup stageAfrican Mixed Team ChampionshipsAppearances15 (first in 1998)Best resultChampions (1998,...

American college baseball season 2015 VCU Rams baseballA10 Tournament championsNCAA Dallas Regional championsNCAA Coral Gables Super Regional, L, 0–2ConferenceAtlantic 10 ConferenceRankingCoachesNo. 15APNo. 18Record40–25 (14–10 A-10)Head coachShawn Stiffler (4th season)Assistant coaches Kurt Elbin (3rd season) Steve Hay (1st season) ML Morgan (1st season) Home stadiumThe DiamondSeasons← 20142016 → 2015 Atlantic 10 Conference baseball standings v...

 

62nd season of the ARCA Racing Series 2014 ARCA Racing Series Previous 2013 Next 2015 Mason Mitchell, the 2014 ARCA champion. Grant Enfinger finished second behind Mitchell in the championship. Tom Hessert III, driving the No. 77 car for Cunningham Motorsports, finished third in the championship. The 2014 ARCA Racing Series presented by Menards was the 62nd season of the ARCA Racing Series. The season began on February 15 with the Lucas Oil 200 presented by MAVTV American Real and ended on Oc...

 

Period after the end of the Cold War For the main trends, see International relations since 1989.Top: the change in borders in eastern Europe following the dissolution of the Soviet Union. Bottom: former Russian president Boris Yeltsin waving the Russian flag in celebration of Russian democracy on 22 August 1991 The post–Cold War era is a period of history that follows the end of the Cold War, which represents history after the dissolution of the Soviet Union in December 1991. This period s...

Macedonian political party This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: VMRO – People's Party – news · newspapers · books · scholar · JSTOR (November 2018) (Learn how and when to remove this message) VMRO – People's Party ВМРО - Народна Партија VMRO – Narodna PartijaLeaderLjubčo G...

 

株式会社第一興商DAIICHIKOSHO CO., LTD. 種類 株式会社機関設計 監査役会設置会社[1]市場情報 東証プライム 74581995年9月19日上場 本社所在地 日本〒141-8701東京都品川区北品川5丁目5-26 北緯35度37分20.7秒 東経139度43分49.6秒 / 北緯35.622417度 東経139.730444度 / 35.622417; 139.730444座標: 北緯35度37分20.7秒 東経139度43分49.6秒 / 北緯35.622417度 東経139.730444度&#...

 

イズレエルにある廃墟の塔(1880年代) この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典は脚注などを用いて記述と関連付けてください。(2020年3月) ほとんどまたは完全に一つの出典に頼っています。(2020年3月)出典検索?: イズレエル – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · d...

Argiope trifasciata Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Arachnida Ordo: Araneae Famili: Araneidae Genus: Argiope Spesies: Argiope trifasciata Nama binomial Argiope trifasciataForsskål, 1775 Argiope trifasciata adalah spesies laba-laba yang tergolong famili Araneidae. Spesies ini juga merupakan bagian dari genus Argiope dan ordo Araneae. Nama ilmiah dari spesies ini pertama kali diterbitkan pada tahun 1775 oleh Forsskål. Laba-laba ini biasanya banyak ditemui di ha...

 

Belgian film and television directors Adil El Arbi and Bilall FallahFallah (left) and El Arbi (right), 2018BornAdil El Arbi (1988-06-30) June 30, 1988 (age 36)Edegem, BelgiumBilall Fallah (1986-01-04) January 4, 1986 (age 38)Vilvoorde, BelgiumAlma materLUCA School of Arts, BrusselsOccupationsFilm directorsscreenwritersfilm editorsYears active2010–present Adil El Arbi (born June 30, 1988) and Bilall Fallah (born January 4, 1986) are Belgian film and television directors. ...

 

Ocean liner As Waesland History United Kingdom NameRussiaWaesland NamesakeRussia OwnerCunard (1867-1880)Red Star Line (1880-1902) OperatorCunard (1867- 1880)Red Star Line (1880-1895American Line (1895-1902) RouteNorth Atlantic BuilderJ & G Thomson, Glasgow Yard number93 Launched20 March 1867 Maiden voyage15 Jun 1867 IdentificationUnited Kingdom Official Number 12729 FateSunk after collision, 5 March 1902 General characteristics TypeLiner Tonnage4.752 GRT Length109.1 m (358 ...

For the railcar, see Arrow (railcar). Exoatmospheric hypersonic anti-ballistic missile Arrow 3 Arrow 3 test launch, January 2014.TypeExoatmospheric hypersonic anti-ballistic missilePlace of originIsraelService historyUsed byIsraelWarsDefence against 2024 Iranian attacks on IsraelProduction historyDesignerIsrael Aerospace IndustriesManufacturerIsrael Aerospace Industries, BoeingProduced2017–presentSpecificationsEngineTwo-stageOperationalrange2400km[1]Flight ceiling>...

 

Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Dichter (Begriffsklärung) aufgeführt. Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Angaben ohne ausreichenden Beleg könnten demnächst entfernt werden. Bitte hilf Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Zwei britische Volksdichter, Evan Jenkins und David Jones, diskutieren ihre Reime in der Werkstatt eines...