Hexamethylbenzene

Hexamethylbenzene
Structural formula of hexamethylbenzene
Ball-and-stick model of the hexamethylbenzene molecule
Names
Preferred IUPAC name
Hexamethylbenzene
Other names
1,2,3,4,5,6-Hexamethylbenzene
Mellitene
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.001.616 Edit this at Wikidata
UNII
  • InChI=1S/C12H18/c1-7-8(2)10(4)12(6)11(5)9(7)3/h1-6H3 ☒N
    Key: YUWFEBAXEOLKSG-UHFFFAOYSA-N ☒N
  • InChI=1/C12H18/c1-7-8(2)10(4)12(6)11(5)9(7)3/h1-6H3
    Key: YUWFEBAXEOLKSG-UHFFFAOYAF
  • c1(c(c(c(c(c1C)C)C)C)C)C
Properties
C12H18
Molar mass 162.276 g·mol−1
Appearance White crystalline powder
Density 1.0630 g cm−3
Melting point 165.6 ± 0.7 °C
Boiling point 265.2 °C (509.4 °F; 538.3 K)
insoluble
Solubility acetic acid, acetone, benzene, chloroform, diethyl ether, ethanol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Hexamethylbenzene, also known as mellitene, is a hydrocarbon with the molecular formula C12H18 and the condensed structural formula C6(CH3)6. It is an aromatic compound and a derivative of benzene, where benzene's six hydrogen atoms have each been replaced by a methyl group. In 1929, Kathleen Lonsdale reported the crystal structure of hexamethylbenzene, demonstrating that the central ring is hexagonal and flat[1] and thereby ending an ongoing debate about the physical parameters of the benzene system. This was a historically significant result, both for the field of X-ray crystallography and for understanding aromaticity.[2][3]

Hexamethylbenzene can be oxidised to mellitic acid,[4] which is found in nature as its aluminium salt in the rare mineral mellite.[5] Hexamethylbenzene can be used as a ligand in organometallic compounds.[6] An example from organoruthenium chemistry shows structural change in the ligand associated with changes in the oxidation state of the metal centre,[7][8] though the same change is not observed in the analogous organoiron system.[7]

In 2016 the crystal structure of the hexamethylbenzene dication C
6
(CH
3
)2+
6
was reported in Angewandte Chemie International Edition,[9] showing a pyramidal structure in which a single carbon atom has a bonding interaction with six other carbon atoms.[10][11] This structure was "unprecedented",[9] as the usual maximum valence of carbon is four, and it attracted attention from New Scientist,[10] Chemical & Engineering News,[11] and Science News.[12] The structure does not violate the octet rule since the carbon–carbon bonds formed are not two-electron bonds, and is pedagogically valuable for illustrating that a carbon atom "can [directly bond] with more than four atoms".[12] Steven Bachrach has demonstrated that the compound is hypercoordinated but not hypervalent, and also explained its aromaticity.[13] The idea of describing the chemical bonding in compounds and chemical species in this way through the lens of organometallic chemistry was proposed in 1975,[14] soon after the dication C
6
(CH
3
)2+
6
was first observed.[15][16][17]

Nomenclature and properties

The complete IUPAC name for this compound is 1,2,3,4,5,6-hexamethylbenzene.[18] The locants (the numbers in front of the name) are superfluous, however, as the name hexamethylbenzene uniquely identifies a single substance and thus is the formal IUPAC name for the compound.[19] It is an aromatic compound, with six π electrons (satisfying Hückel's rule) delocalised over a cyclic planar system; each of the six ring carbon atoms is sp2 hybridised and displays trigonal planar geometry, while each methyl carbon is tetrahedral with sp3 hybridisation, consistent with the empirical description of its structure.[1] Solid hexamethylbenzene occurs as colourless to white crystalline orthorhombic prisms or needles[20] with a melting point of 165–166 °C,[21] a boiling point of 268 °C, and a density of 1.0630 g cm−3.[20] It is insoluble in water, but soluble in organic solvents including benzene and ethanol.[20]

The mineral mellite (left) is composed of a hydrated aluminium salt of mellitic acid (right)

Hexamethylbenzene is sometimes called mellitene,[20] a name derived from mellite, a rare honey-coloured mineral (μέλι meli (GEN μέλιτος melitos) is the Greek word for honey.[22]) Mellite is composed of a hydrated aluminium salt of benzenehexacarboxylic acid (mellitic acid), with formula Al
2
[C
6
(CO
2
)
6
]•16H
2
O
.[5] Mellitic acid itself can be derived from the mineral,[23] and subsequent reduction yields mellitene. Conversely, mellitene can be oxidised to form mellitic acid:[4]

Treatment of hexamethylbenzene with a superelectrophilic mixture of methyl chloride and aluminum trichloride (a source of Meδ⊕Cl---δ⊖AlCl3) gives heptamethylbenzenium cation, one of the first carbocations to be directly observed.

Structure

In 1927 Kathleen Lonsdale determined the solid structure of hexamethylbenzene from crystals provided by Christopher Kelk Ingold.[3] Her X-ray diffraction analysis was published in Nature[24] and was subsequently described as "remarkable ... for that early date".[3] Lonsdale described the work in her book Crystals and X-Rays,[25] explaining that she recognised that, though the unit cell was triclinic, the diffraction pattern had pseudo-hexagonal symmetry that allowed the structural possibilities to be restricted sufficiently for a trial-and-error approach to produce a model.[3] This work definitively showed that hexamethylbenzene is flat and that the carbon-to-carbon distances within the ring are the same,[2] providing crucial evidence in understanding the nature of aromaticity.

Preparation

The compound can be prepared by reacting phenol with methanol at elevated temperatures over a suitable solid catalyst such as alumina.[26][21][27] The mechanism of the process has been studied extensively,[28][29][30][31] with several intermediates having been identified.[27][32][33] Alkyne trimerisation of dimethylacetylene also yields hexamethylbenzene[34] in the presence of a suitable catalyst.[35][36]

In 1880, Joseph Achille Le Bel and William H. Greene reported[37] what has been described as an "extraordinary" zinc chloride-catalysed one-pot synthesis of hexamethylbenzene from methanol.[38] At the catalyst's melting point (283 °C), the reaction has a Gibbs free energy (ΔG) of −1090 kJ mol−1 and can be idealised as:[38]

15 CH
3
OH
  →   C
6
(CH
3
)
6
  +   3 CH
4
  +   15 H
2
O

Le Bel and Greene rationalised the process as involving aromatisation by condensation of methylene units, formed by dehydration of methanol molecules, followed by complete Friedel–Crafts methylation of the resulting benzene ring with chloromethane generated in situ.[38] The major products were a mixture of saturated hydrocarbons, with hexamethylbenzene as a minor product.[39] Hexamethylbenzene is also produced as a minor product in the Friedel–Crafts alkylation synthesis of durene from p-xylene, and can be produced by alkylation in good yield from durene or pentamethylbenzene.[40]

Hexamethylbenzene is typically prepared in the gas phase at elevated temperatures over solid catalysts. An early approach to preparing hexamethylbenzene involved reacting a mixture of acetone and methanol vapours over an alumina catalyst at 400 °C.[41] Combining phenols with methanol over alumina in a dry carbon dioxide atmosphere at 410–440 °C also produces hexamethylbenzene,[26] though as part of a complex mixture of anisole (methoxybenzene), cresols (methylphenols), and other methylated phenols.[32] An Organic Syntheses preparation, using methanol and phenol with an alumina catalyst at 530 °C, gives approximately a 66% yield,[21] though synthesis under different conditions has also been reported.[27]

The mechanisms of such surface-mediated reactions have been investigated, with an eye to achieving greater control over the outcome of the reaction,[29][42] especially in search of selective and controlled ortho-methylation.[30][31][43][44] Both anisole[32] and pentamethylbenzene[27] have been reported as intermediates in the process. Valentin Koptyug and co-workers found that both hexamethylcyclohexadienone isomers (2,3,4,4,5,6- and 2,3,4,5,6,6-) are intermediates in the process, undergoing methyl migration to form the 1,2,3,4,5,6-hexamethylbenzene carbon skeleton.[28][33]

Trimerisation of three 2-butyne (dimethylacetylene) molecules yields hexamethylbenzene.[34] The reaction is catalyzed by triphenylchromium tri-tetrahydrofuranate[35] or by a complex of triisobutylaluminium and titanium tetrachloride.[36]

Uses

Synthetic uses

Hexamethylbenzene can be used as a ligand in organometallic compounds.

Other uses

Hexamethylbenzene has no commercial or widespread uses. It is exclusively of interest for chemical research.

Reactions

It forms orange-yellow 1:1 adduct with picryl chloride,[45] probably due to π-stacking of the aromatic systems.

Oxidation with trifluoroperacetic acid or hydrogen peroxide gives 2,3,4,5,6,6-hexamethyl-2,4-cyclohexadienone:[46][28][33])

It has also been used as a solvent for 3He-NMR spectroscopy.[47]

Just as with benzene itself, the electron-rich aromatic system in hexamethylbenzene allows it to act as a ligand in organometallic chemistry.[6] The electron-donating nature of the methyl groups—both that there are six of them individually and that there are six meta pairs among them—enhance the basicity of the central ring by six to seven orders of magnitude relative to benzene.[48] Examples of such complexes have been reported for a variety of metal centres, including cobalt,[49] chromium,[35] iron,[7] rhenium,[50] rhodium,[49] ruthenium,[8] and titanium.[36] Known cations of sandwich complexes of cobalt and rhodium with hexamethylbenzene take the form [M(C
6
(CH
3
)
6
)
2
]
n+ (M = Co, Fe, Rh, Ru; n = 1, 2), where the metal centre is bound by the π electrons of the two arene moieties, and can easily be synthesised from appropriate metal salts by ligand exchange, for example:[49]

CoBr
2
  +   2 AlBr
3
  →   [Co(C
6
(CH
3
)
6
)
2
]2+
  +   2 AlBr
4

The complexes can undergo redox reactions. The rhodium and cobalt dications undergo a one-electron reduction with a suitable active metal (aluminium for the cobalt system, zinc for the rhodium), and the equations describing the reactions in the cobalt system are as follows:[49]

[Co(C
6
(CH
3
)
6
)
2
]2+
  +   Al   →   3 [Co(C
6
(CH
3
)
6
)
2
]+
  +   Al3+
The structure of the [Ru(C6(CH3)6)2]n+ moiety changes with the oxidation state of the metal centre[8]
Left: n = 2, [RuII6-C6(CH3)6)2]2+
Right: n = 0, [Ru04-C6(CH3)6)(η6-C6(CH3)6)]
Methyl groups omitted for clarity. The electron-pairs involved with carbon–ruthenium bonding are in red.

In the field of organoruthenium chemistry, the redox interconversion of the analogous two-electron reduction of the dication and its neutral product occurs at −1.02 V in acetonitrile[7] and is accompanied by a structural change.[8][51] The hapticity of one of the hexamethylbenzene ligands changes with the oxidation state of the ruthenium centre, the dication [Ru(η6-C6(CH3)6)2]2+ being reduced to [Ru(η4-C6(CH3)6)(η6-C6(CH3)6)],[8] with the structural change allowing each complex to comply with the 18-electron rule and maximise stability.

The equivalent iron(II) complex undergoes a reversible one-electron reduction (at −0.48 V in aqueous ethanol), but the two-electron reduction (at −1.46 V) is irreversible,[7] suggesting a change in structure different from that found in the ruthenium system.

Dication

Pyramidal carbocation with composition C
6
(CH
3
)2+
6

The isolation of an ion with composition C
6
(CH
3
)
6
H+
was first reported from investigations of hexamethyl Dewar benzene in the 1960s;[52] a pyramidal structure was suggested based on NMR evidence[53] and subsequently supported by disordered[9] crystal structure data.[54] In the early 1970s theoretical work led by Hepke Hogeveen predicted the existence of a pyramidal dication C
6
(CH
3
)2+
6
, and the suggestion was soon supported by experimental evidence.[15][16][17] Spectroscopic investigation of the two-electron oxidation of benzene at very low temperatures (below 4 K) shows that a hexagonal dication forms and then rapidly rearranges into a pyramidal structure:[55]

Three-dimensional representation of C
6
(CH
3
)2+
6
having a rearranged pentagonal-pyramid framework

Two-electron oxidation of hexamethylbenzene would be expected to result in a near-identical rearrangement to a pyramidal carbocation, but attempts to synthesise it in bulk by this method have been unsuccessful.[9] However, a modification of the Hogeveen approach was reported in 2016, along with a high-quality crystal structure determination of [C
6
(CH
3
)
6
][SbF
6
]
2
•HSO
3
F
. The pyramidal core is about 1.18 ångströms high, and each of the methyl groups on the ring is located slightly above that base plane[9] to give a somewhat inverted tetrahedral geometry for the carbons of the base of the pyramid. The preparation method involved treating the epoxide of hexamethyl Dewar benzene with magic acid, which formally abstracts an oxide anion (O2−
) to form the dication:[9]

Though indirect spectroscopic evidence and theoretical calculations previously pointed to their existence, the isolation and structural determination of a species with a hexacoordinate carbon bound only to other carbon atoms is unprecedented,[9] and has attracted comment in Chemical & Engineering News,[11] New Scientist,[10] Science News,[12] and ZME Science.[56] The carbon atom at the top of the pyramid is bonding with six other atoms, an unusual arrangement as the usual maximum valence for this element is four.[11] The molecule is aromatic and avoids exceeding the octet on carbon by having only a total of six electrons in the five bonds between the base of the pyramid and its apex. That is, each of the vertical edges of the pyramid is only a partial bond rather than a normal covalent bond that would have two electrons shared between two atoms. Although the top carbon does bond to six others, it does so using a total of no more than eight electrons.[14]

The dication, noting the weak bonds forming the upright edges of the pyramid, shown as dashed lines in the structure, have a Wiberg bond order of about 0.54; it follows that the total bond order is 5 × 0.54 + 1 = 3.7 < 4, and thus the species is not hypervalent, though it is hypercoordinate.[13] The differences in bonding in the dication—the ring having aromatic character and the vertical edges being weak partial bonds—are reflected in variations of the carbon–carbon bond lengths: the ring bonds are 1.439–1.445 Å,, the bonds to the methyl groups are 1.479–1.489 Å,, and the vertical edges are 1.694–1.715 Å.[9] Bachrach rationalised the three-dimensional aromaticity of the dication by considering it as comprising the ring C
5
(CH
3
)+
5
as a four-electron donor and topped by the CCH+
3
fragment, which provides two electrons, for a total of six electrons in the aromatic cage, in line with Hückel's rule for n = 1.[13] From the perspective of organometallic chemistry, the species can be viewed as [(η5
–C
5
(CH
3
)
5
)C(CH
3
)]
.[14]
This satisfies the octet rule by binding a carbon(IV) centre (C4+
) to an aromatic η5pentamethylcyclopentadienyl anion (six-electron donor) and methyl anion (two-electron donor), analogous to the way the gas-phase organozinc monomer [(η5
–C
5
(CH
3
)
5
)Zn(CH
3
)],
having the same ligands bound to a zinc(II) centre (Zn2+
) satisfies the 18 electron rule on the metal.[57][58]

Left: Structure of C
6
(CH
3
)2+
6
, as drawn by Steven Bachrach[13]
Right: The analogous organometallic complex [(η5
–C
5
(CH
3
)
5
)Zn(CH
3
)][57]

It has been commented that "[i]t's super important that people realize that, although we're taught carbon can only have four friends, carbon can be associated with more than four atoms" and added that the "carbon isn't making six bonds in the sense that we usually think of a carbon-carbon bond as a two-electron bond."[12] "It is all about the challenge and the possibility to astonish chemists about what can be possible."[10]

References

  1. ^ a b Lonsdale, Kathleen (1929). "The Structure of the Benzene Ring in Hexamethylbenzene". Proc. R. Soc. A. 123 (792): 494–515. doi:10.1098/rspa.1929.0081.
  2. ^ a b Lydon, John (January 2006). "A Welcome to Leeds" (PDF). Newsletter of the History of Physics Group (19): 8–11.
  3. ^ a b c d Lydon, John (July 2006). "Letters" (PDF). Newsletter of the History of Physics Group (20): 34–35.
  4. ^ a b Wibaut, J. P.; Overhoff, J.; Jonker, E. W.; Gratama, K. (1941). "On the preparation of mellitic acid from hexa-methylbenzene and on the hexachloride of mellitic acid". Recl. Trav. Chim. Pays-Bas. 60 (10): 742–746. doi:10.1002/recl.19410601005.
  5. ^ a b Wenk, Hans-Rudolf; Bulakh, Andrey (2016). "Organic Minerals". Minerals – Their Constitution and Origin (2nd ed.). Cambridge University Press. ISBN 9781316423684.
  6. ^ a b Pampaloni, Guido (2010). "Aromatic hydrocarbons as ligands. Recent advances in the synthesis, the reactivity and the applications of bis(η6-arene) complexes". Coord. Chem. Rev. 254 (5–6): 402–419. doi:10.1016/j.ccr.2009.05.014.
  7. ^ a b c d e Kotz, John C. (1986). "The Electrochemistry of Transition Metal Organometallic Compounds". In Fry, Albert J.; Britton, Wayne E. (eds.). Topics in Organic Electrochemistry. Springer Science & Business Media. pp. 83–176. ISBN 9781489920348.
  8. ^ a b c d e Huttner, Gottfried; Lange, Siegfried; Fischer, Ernst O. (1971). "Molecular Structure of Bis(Hexamethylbenzene)Ruthenium(0)". Angew. Chem. Int. Ed. Engl. 10 (8): 556–557. doi:10.1002/anie.197105561.
  9. ^ a b c d e f g h Malischewski, Moritz; Seppelt, Konrad (2017). "Crystal Structure Determination of the Pentagonal-Pyramidal Hexamethylbenzene Dication C6(CH3)62+". Angew. Chem. Int. Ed. 56 (1): 368–370. doi:10.1002/anie.201608795. PMID 27885766.
  10. ^ a b c d Boyle, Rebecca (14 January 2017). "Carbon seen bonding with six other atoms for the first time". New Scientist (3108). Archived from the original on 16 January 2017. Retrieved 14 January 2017.
  11. ^ a b c d Ritter, Stephen K. (19 December 2016). "Six bonds to carbon: Confirmed". Chem. Eng. News. 94 (49): 13. doi:10.1021/cen-09449-scicon007. Archived from the original on 9 January 2017.
  12. ^ a b c d Hamers, Laurel (24 December 2016). "Carbon can exceed four-bond limit". Science News. 190 (13): 17. Archived from the original on 3 February 2017.
  13. ^ a b c d Bachrach, Steven M. (17 January 2017). "A six-coordinate carbon atom". comporgchem.com. Archived from the original on 19 January 2017. Retrieved 18 January 2017.
  14. ^ a b c Hogeveen, Hepke; Kwant, Peter W. (1975). "Pyramidal mono- and dications. Bridge between organic and organometallic chemistry". Acc. Chem. Res. 8 (12): 413–420. doi:10.1021/ar50096a004.
  15. ^ a b Hogeveen, Hepke; Kwant, Peter W. (1973). "Direct observation of a remarkably stable dication of unusual structure: (CCH3)62⊕". Tetrahedron Lett. 14 (19): 1665–1670. doi:10.1016/S0040-4039(01)96023-X.
  16. ^ a b Hogeveen, Hepke; Kwant, Peter W.; Postma, J.; van Duynen, P. Th. (1974). "Electronic spectra of pyramidal dications, (CCH3)62+ and (CCH)62+". Tetrahedron Lett. 15 (49–50): 4351–4354. doi:10.1016/S0040-4039(01)92161-6.
  17. ^ a b Hogeveen, Hepke; Kwant, Peter W. (1974). "Chemistry and spectroscopy in strongly acidic solutions. XL. (CCH3)62+, an unusual dication". J. Am. Chem. Soc. 96 (7): 2208–2214. doi:10.1021/ja00814a034.
  18. ^ PubChem. "Hexamethylbenzene". pubchem.ncbi.nlm.nih.gov. Retrieved 5 May 2024.
  19. ^ Favre, Henri A.; Powell, Warren H. (2013). Nomenclature of Organic Chemistry. IUPAC Recommendations and Preferred Name 2013. Royal Society of Chemistry. ISBN 9780854041824.
  20. ^ a b c d Haynes, William M., ed. (2016). CRC Handbook of Chemistry and Physics (93rd ed.). CRC Press. p. 3-296. ISBN 9781439880500.
  21. ^ a b c Cullinane, N. M.; Chard, S. J.; Dawkins, C. W. C. (1955). "Hexamethylbenzene". Organic Syntheses. 35: 73. doi:10.15227/orgsyn.035.0073; Collected Volumes, vol. 4, p. 520.
  22. ^ μέλι in Liddell, Henry George; Scott, Robert (1940) A Greek–English Lexicon, revised and augmented throughout by Jones, Sir Henry Stuart, with the assistance of McKenzie, Roderick. Oxford: Clarendon Press. In the Perseus Digital Library, Tufts University..
  23. ^ Liebig, Justus (1844). "Lectures on organic chemistry: delivered during the winter session, 1844, in the University of Giessen". The Lancet. 2 (1106): 190–192. doi:10.1016/s0140-6736(02)64759-2.
  24. ^ Lonsdale, Kathleen (1928). "The Structure of the Benzene Ring". Nature. 122 (810): 810. Bibcode:1928Natur.122..810L. doi:10.1038/122810c0. S2CID 4105837.
  25. ^ Lonsdale, Kathleen (1948). Crystals and X-Rays. George Bell & Sons.
  26. ^ a b Briner, E.; Plüss, W.; Paillard, H. (1924). "Recherches sur la déshydration catalytique des systèmes phénols-alcools" [Research on the catalytic dehydration of phenol-alcohol systems]. Helv. Chim. Acta (in French). 7 (1): 1046–1056. doi:10.1002/hlca.192400701132.
  27. ^ a b c d Landis, Phillip S.; Haag, Werner O. (1963). "Formation of Hexamethylbenzene from Phenol and Methanol". J. Org. Chem. 28 (2): 585. doi:10.1021/jo01037a517.
  28. ^ a b c Krysin, A. P.; Koptyug, V. A. (1969). "Reaction of phenols with alcohols on aluminum oxide II. The mechanism of hexamethylbenzene formation from phenol and methyl alcohol". Russ. Chem. Bull. 18 (7): 1479–1482. doi:10.1007/BF00908756.
  29. ^ a b Ipatiew, W.; Petrow, A. D. (1926). "Über die katalytische Kondensation von Aceton bei hohen Temperaturen und Drucken. (I. Mitteilung)" [On the catalytic condensation of acetone at high temperatures and pressures. (I. Communication)]. Ber. Dtsch. Chem. Ges. A/B (in German). 59 (8): 2035–2038. doi:10.1002/cber.19260590859.
  30. ^ a b Kotanigawa, Takeshi; Yamamoto, Mitsuyoshi; Shimokawa, Katsuyoshi; Yoshida, Yuji (1971). "Methylation of Phenol over Metallic Oxides". Bulletin of the Chemical Society of Japan. 44 (7): 1961–1964. doi:10.1246/bcsj.44.1961.
  31. ^ a b Kotanigawa, Takeshi (1974). "Mechanisms for the Reaction of Phenol with Methanol over the ZnO–Fe2O3 Catalyst". Bull. Chem. Soc. Jpn. 47 (4): 950–953. doi:10.1246/bcsj.47.950.
  32. ^ a b c Cullinane, N. M.; Chard, S. J. (1945). "215. The action of methanol on phenol in the presence of alumina. Formation of anisole, methylated phenols, and hexamethylbenzene". J. Chem. Soc.: 821–823. doi:10.1039/JR9450000821. PMID 21008356.
  33. ^ a b c Shubin, V. G.; Chzhu, V. P.; Korobeinicheva, I. K.; Rezvukhin, A. I.; Koptyug, V. A. (1970). "UV, IR, AND PMR spectra of hydroxyhexamethylbenzenonium ions". Russ. Chem. Bull. 19 (8): 1643–1648. doi:10.1007/BF00996497.
  34. ^ a b Weber, S. R.; Brintzinger, H. H. (1977). "Reactions of Bis(hexamethylbenzene)iron(0) with Carbon Monoxide and with Unsaturated Hydrocarbons". J. Organomet. Chem. 127 (1): 45–54. doi:10.1016/S0022-328X(00)84196-0. hdl:2027.42/22975.
  35. ^ a b c Zeiss, H. H.; Herwig, W. (1958). "Acetylenic π-complexes of chromium in organic synthesis". J. Am. Chem. Soc. 80 (11): 2913. doi:10.1021/ja01544a091.
  36. ^ a b c Franzus, B.; Canterino, P. J.; Wickliffe, R. A. (1959). "Titanium tetrachloride–trialkylaluminum complex—A cyclizing catalyst for acetylenic compounds". J. Am. Chem. Soc. 81 (6): 1514. doi:10.1021/ja01515a061.
  37. ^ Le Bel, Joseph Achille; Greene, William H. (1880). "On the decomposition of alcohols, etc., by zinc chloride at high temperatures". American Chemical Journal. 2: 20–26.
  38. ^ a b c Chang, Clarence D. (1983). "Hydrocarbons from Methanol". Catal. Rev. - Sci. Eng. 25 (1): 1–118. doi:10.1080/01614948308078874.
  39. ^ Olah, George A.; Doggweiler, Hans; Felberg, Jeff D.; Frohlich, Stephan; Grdina, Mary Jo; Karpeles, Richard; Keumi, Takashi; Inaba, Shin-ichi; Ip, Wai M.; Lammertsma, Koop; Salem, George; Tabor, Derrick (1984). "Onium Ylide chemistry. 1. Bifunctional acid-base-catalyzed conversion of heterosubstituted methanes into ethylene and derived hydrocarbons. The onium ylide mechanism of the C1→C2 conversion". J. Am. Chem. Soc. 106 (7): 2143–2149. doi:10.1021/ja00319a039.
  40. ^ Smith, Lee Irvin (1930). "Durene". Organic Syntheses. 10: 32. doi:10.15227/orgsyn.010.0032; Collected Volumes, vol. 2, p. 248.
  41. ^ Reckleben, Hans; Scheiber, Johannes (1913). "Über eine einfache Darstellung des Hexamethyl-benzols" [A simple representation of hexamethylbenzene]. Ber. Dtsch. Chem. Ges. (in German). 46 (2): 2363–2365. doi:10.1002/cber.191304602168.
  42. ^ Ipatiew, W. N.; Petrow, A. D. (1927). "Über die katalytische Kondensation des Acetons bei hohen Temperaturen und Drucken (II. Mitteilung)" [On the catalytic condensation of acetone at high temperatures and pressures (II. Communication)]. Ber. Dtsch. Chem. Ges. A/B (in German). 60 (3): 753–755. doi:10.1002/cber.19270600328.
  43. ^ Kotanigawa, Takeshi; Shimokawa, Katsuyoshi (1974). "The Alkylation of Phenol over the ZnO–Fe2O3 Catalyst". Bull. Chem. Soc. Jpn. 47 (6): 1535–1536. doi:10.1246/bcsj.47.1535.
  44. ^ Kotanigawa, Takeshi (1974). "The Methylation of Phenol and the Decomposition of Methanol on ZnO–Fe2O3 Catalyst". Bull. Chem. Soc. Jpn. 47 (10): 2466–2468. doi:10.1246/bcsj.47.2466.
  45. ^ Ross, Sidney D.; Bassin, Morton; Finkelstein, Manuel; Leach, William A. (1954). "Molecular Compounds. I. Picryl Chloride-Hexamethylbenzene in Chloroform Solution". J. Am. Chem. Soc. 76 (1): 69–74. doi:10.1021/ja01630a018.
  46. ^ Hart, Harold; Lange, Richard M.; Collins, Peter M. (1968). "2,3,4,5,6,6-Hexamethyl-2,4-cyclohexadien-1-one". Organic Syntheses. 48: 87. doi:10.15227/orgsyn.048.0087; Collected Volumes, vol. 5, p. 598.
  47. ^ Saunders, Martin; Jiménez-Vázquez, Hugo A.; Khong, Anthony (1996). "NMR of 3He Dissolved in Organic Solids". J. Phys. Chem. 100 (39): 15968–15971. doi:10.1021/jp9617783.
  48. ^ Earhart, H. W.; Komin, Andrew P. (2000). "Polymethylbenzenes". Kirk-Othmer Encyclopedia of Chemical Technology. New York: John Wiley. doi:10.1002/0471238961.1615122505011808.a01. ISBN 9780471238966.
  49. ^ a b c d Fischer, Ernst Otto; Lindner, Hans Hasso (1964). "Über Aromatenkomplexe von Metallen. LXXVI. Di-hexamethylbenzol-metall-π-komplexe des ein- und zweiwertigen Kobalts und Rhodiums" [About Aromatic Complexes of Metals. LXXVI. Di-hexamethylbenzene metal-π-complexes of mono- and bivalent cobalt and rhodium]. J. Organomet. Chem. (in German). 1 (4): 307–317. doi:10.1016/S0022-328X(00)80056-X.
  50. ^ Fischer, Ernst Otto; Schmidt, Manfred W. (1966). "Über Aromatenkomplexe von Metallen, XCI. Über monomeres und dimeres Bis-hexamethylbenzol-rhenium". Chem. Ber. 99 (7): 2206–2212. doi:10.1002/cber.19660990719.
  51. ^ Bennett, Martin A.; Huang, T.-N.; Matheson, T. W.; Smith, A. K. (1982). 16. (η6-Hexamethylbenzene)Ruthenium Complexes. Vol. 21. pp. 74–78. doi:10.1002/9780470132524.ch16. ISBN 9780470132524. {{cite book}}: |journal= ignored (help)
  52. ^ Schäfer, W.; Hellmann, H. (1967). "Hexamethyl(Dewar Benzene) (Hexamethylbicyclo[2.2.0]hexa-2,5-diene)". Angew. Chem. Int. Ed. Engl. 6 (6): 518–525. doi:10.1002/anie.196705181.
  53. ^ Paquette, Leo A.; Krow, Grant R.; Bollinger, J. Martin; Olah, George A. (1968). "Protonation of hexamethyl Dewar benzene and hexamethylprismane in fluorosulfuric acid – antimony pentafluoride – sulfur dioxide". J. Am. Chem. Soc. 90 (25): 7147–7149. doi:10.1021/ja01027a060.
  54. ^ Laube, Thomas; Lohse, Christian (1994). "X-ray Crystal Structures of Two (deloc-2,3,5)-1,2,3,4,5,6- Hexamethylbicyclo[2.1.1]hex-2-en-5-ylium Ions". J. Am. Chem. Soc. 116 (20): 9001–9008. doi:10.1021/ja00099a018.
  55. ^ Jašík, Juraj; Gerlich, Dieter; Roithová, Jana (2014). "Probing Isomers of the Benzene Dication in a Low-Temperature Trap". J. Am. Chem. Soc. 136 (8): 2960–2962. doi:10.1021/ja412109h. PMID 24528384.
  56. ^ Puiu, Tibi (5 January 2017). "Exotic carbon molecule has six bonds, breaking the four-bond limit". zmescience.com. ZME Science. Archived from the original on 16 January 2017. Retrieved 14 January 2017.
  57. ^ a b Haaland, Arne; Samdal, Svein; Seip, Ragnhild (1978). "The molecular structure of monomeric methyl(cyclopentadienyl)zinc, (CH3)Zn(η-C5H5), determined by gas phase electron diffraction". J. Organomet. Chem. 153 (2): 187–192. doi:10.1016/S0022-328X(00)85041-X.
  58. ^ Elschenbroich, Christoph (2006). "Organometallic Compounds of Groups 2 and 12". Organometallics (3rd ed.). John Wiley & Sons. pp. 59–85. ISBN 9783527805143.

Read other articles:

Kitab kuning Tafsir al-Jalalain Kitab kuning, dalam pendidikan agama Islam, merujuk kepada kitab-kitab tradisional yang berisi pelajaran-pelajaran agama Islam (diraasah al-islamiyyah) yang diajarkan pada pondok-pondok Pesantren, mulai dari fiqh, aqidah, akhlaq, tata bahasa arab (`ilmu nahwu dan `ilmu sharf), hadits, tafsir, ilmu Al-Qur'an, hingga pada ilmu sosial dan kemasyarakatan (mu`amalah). Dikenal juga dengan kitab gundul karena memang tidak memiliki harakat (fathah, kasrah, dhammah, suk...

 

Dewan Perwakilan Rakyat Daerah Kabupaten Tapanuli TengahDewan Perwakilan Rakyat Kabupaten Tapanuli Tengah2019-2024JenisJenisUnikameral Jangka waktu5 tahunSejarahSesi baru dimulai17 Februari 2020PimpinanKetuaKhairul Kiyedi Pasaribu (NasDem) sejak 17 Februari 2020 Wakil Ketua IAgus Fitriadi Panggabean (Golkar) sejak 17 Februari 2020 Wakil Ketua IIWilly Saputra Silitonga, S.H. (PDI-P) sejak 17 Februari 2020 KomposisiAnggota35Partai & kursi  PDI-P (4)   NasDem ...

 

Eutrofikasi dapat menyebabkan mekarnya alga seperti yang terjadi di sungai dekat Chengdu, Sichuan, Cina. Yang seperti ini kerap kali merupakan pertumbuhan alga yang membahayakan. Eutrofikasi adalah proses di mana seluruh badan air, atau sebagian darinya, secara bertahap mengalami peningkatan kadar mineral dan nutrien, terutama nitrogen dan fosforus. Eutrofikasi juga didefinisikan sebagai peningkatan produktivitas fitoplankton yang disebabkan oleh meningkatnya unsur nutrien.[1]:459 Bad...

American diplomat George KentUnited States Ambassador to Estonia IncumbentAssumed office February 21, 2023PresidentJoe BidenPreceded byJames D. Melville Jr.United States Deputy Assistant Secretary of State for the Bureau of European and Eurasian AffairsIn officeSeptember 4, 2018 – September 3, 2021PresidentDonald TrumpJoe BidenU.S. Deputy Chief of Mission to UkraineIn office2015–2018PresidentBarack ObamaDonald TrumpSucceeded byPamela Tremont Personal detailsEducationHarvard U...

 

The Greatest MarriagePoster promosiNama alternatifThe Best Wedding The Best Marriage The Greatest WeddingGenreRomansa Drama KomediBerdasarkanThe Greatest Marriageoleh Jung Yi-joonDitulis olehGo Yoon-heeSutradaraOh Jong-rokPemeranPark Si-yeonBae Soo-binNo Min-wooNegara asalKorea SelatanBahasa asliKoreaJmlh. episode16ProduksiLokasi produksiKoreaRumah produksiC StoryRilis asliJaringanTV ChosunRilis27 September (2014-09-27) –27 Desember 2014 (2014-12-27) The Greatest Marriage (H...

 

Joel Santana Informasi pribadiTanggal lahir 25 Desember 1948 (umur 75)Tempat lahir BrasilPosisi bermain BekKepelatihanTahun Tim 2006 Vegalta Sendai Joel Santana (lahir 25 Desember 1948) adalah pemain sepak bola asal Brasil. Pranala luar (Jepang)J.League Data Site Artikel bertopik pemain sepak bola Brasil ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

Indian actor For the Indian politician, see P. Balachandra Menon. This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Balachandra Menon – news · newspapers · books · scholar · JSTOR (January 2011) (...

 

American baseball player (born 1994) Baseball player Alex De GotiDe Goti with the Sugar Land Space Cowboys in 2022Texas Rangers InfielderBorn: (1994-08-19) August 19, 1994 (age 29)Miami, Florida, U.S.Bats: RightThrows: RightMLB debutApril 16, 2021, for the Houston AstrosMLB statistics (through 2021 season)Batting average.333Home runs0Runs batted in1 Teams Houston Astros (2021) Alexander De Goti (born August 19, 1994) is an American professional baseball infielder in the Te...

 

Weapons of mass destruction By type Biological Chemical Nuclear Radiological By country Albania Algeria Argentina Australia Brazil Bulgaria Canada China Egypt France Germany India Iran Iraq Israel Italy Japan Libya Mexico Myanmar Netherlands North Korea Pakistan Philippines Poland Rhodesia Romania Russia (Soviet Union) Saudi Arabia South Africa South Korea Spain Sweden Switzerland Syria Taiwan Ukraine United Kingdom United States Proliferation Chemical Nuclear Missiles Treaties List of treat...

Giamaica Uniformi di gara Casa Trasferta Sport Calcio Federazione JFFJamaica Football Federation Confederazione CONCACAF Codice FIFA JAM Soprannome The Reggae Boyz (i ragazzi del Reggae) Selezionatore Heimir Hallgrímsson Record presenze Ian Goodison (128) Capocannoniere Luton Shelton (35) Ranking FIFA 55º (26 ottobre 2023)[1] Esordio internazionale Haiti 1 - 2 Giamaica Haiti; 9 marzo 1925 Migliore vittoria Giamaica 12 - 0 Isole Vergini Britanniche Grand Cayman, Isole Cayman; 4 marz...

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

 

MV al Marjan History Nameal Marjan OwnerShamir Marine, UAE OperatorBiyat International Port of registryComoros RouteDubai to Mogadishu BuilderRobb Henry Launched1967 Out of service2010 FateCaught fire in Magadishu, 27 January 2010 NotesIMO number: 6717344 General characteristics Tonnage2850 dwt Crew22 MV al-Marjan was a cargo vessel active in the Horn of Africa. It was involved in relief efforts, and delivered food commodities from Dar es Salaam to Kismayu and Merca in March 2007. Captu...

Sports governing body Papua New Guinea Football AssociationOFCShort namePNGFAFounded1962HeadquartersPort MoresbyFIFA affiliation1966OFC affiliation1966PresidentJohn Kapi NattoWebsitehttp://www.pngfootball.com.pg The Papua New Guinea Football Association, PNGFA is the governing body of soccer in Papua New Guinea. The PNGFA is a member of both FIFA and OFC, having FIFA and OFC affiliation in 1966 after being founded in 1962. The PNGFA is a member of the Papua New Guinea Olympic Committee, meani...

 

Cet article concerne les structures de l'Église catholique en tant qu'institution, dont font partie les Églises catholiques orientales. Pour la religion, voir catholicisme. Pour la composition de l'Église catholique, voir Composition de l'Église catholique. Pour l'histoire de l'Église catholique, voir Histoire de l'Église catholique. Pour les articles homonymes, voir Église catholique (homonymie). Église catholique La basilique Saint-Pierre au Vatican. Généralités Branche Cath...

 

2016年亞洲羽毛球團體錦標賽賽事資料日期2016年2月15日-2月21日屆次第1屆舉辦地點 印度海得拉巴比賽場地GMC Balayogi Indoor Stadium下一屆 → 2016年亞洲羽毛球團體錦標賽為第1屆亞洲羽毛球團體錦標賽,亦為第29屆湯姆斯盃男子羽毛球團體賽和第26屆優霸盃女子羽毛球團體賽的五個區域預賽之一,是一項由亞洲羽毛球聯合會組織的羽毛球賽事,男子團體及女子團體的比賽將�...

Park in British Columbia, Canada God's Pocket Provincial ParkIUCN category II (national park)Show map of Vancouver IslandShow map of British ColumbiaLocationRupert Land District, British Columbia, CanadaNearest cityPort Hardy, BCCoordinates50°50′14″N 127°33′39″W / 50.83722°N 127.56083°W / 50.83722; -127.56083Area2,036 ha. (20.36 km²)EstablishedJuly 13, 1995Governing bodyBC Parks Map of God's Pocket God's Pocket Marine Provincial Park is a provinc...

 

International Tennis Hall of Fame UbicazioneStato Stati Uniti LocalitàNewport IndirizzoBellevue Avenue, Casino building Coordinate41°28′58.08″N 71°18′29.52″W41°28′58.08″N, 71°18′29.52″W CaratteristicheTipoSport Istituzione1880 FondatoriJimmy Van Alen Apertura1954 Sito web Modifica dati su Wikidata · Manuale International Tennis Hall of FameGenereTennis UbicazionePaese Stati Uniti SedeNewport Dati generaliFondazione1954 Presidente Stan Smith Sito web M...

 

الكنيسة الأرثوذكسية في أمريكا المؤسس هيرمان من ألاسكا،  وإينوسنت من ألاسكا  الأصل الكنيسة الأرثوذكسية الشرقية  تعديل مصدري - تعديل   الكنيسة الأرثوذكسية في أمريكا (بالإنكليزية: Orthodox Church in America واختصاراً OCA)، واسمها السابق هو الكنيسة الجامعة الرومية الأرثوذكسية ا...

東海大学丸二世  東海大学丸二世基本情報船種 練習船船籍 日本所有者 東海大学運用者 東海大学 海洋学部建造所 石川島播磨重工業 東京第二工場船級 JGIMO番号 6809422経歴起工 1967年4月進水 1967年8月竣工 1968年1月就航 1968年1月引退 1993年その後 東海大学海洋科学博物館で陸上保存2016年12月、老朽化により解体要目総トン数 701.14 トン全長 50.60 m幅 9.20 m深さ 4.90 m機関方式 デ...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: カルマル戦争 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2015年3月) カルマル戦争時1611年 - 1613年場所デンマーク�...