September 4, 2013 the Health IT Policy Committee (HITPC) accepted and approved recommendations from the Food and Drug Administration Safety and Innovation Act (FDASIA) working group for a risk-based regulatory framework for health information technology.[3]The Food and Drug Administration (FDA), the Office of the National Coordinator for Health IT (ONC), and Federal Communications Commission (FCC) kicked off the FDASIA workgroup of the HITPC to provide stakeholder input into a report on a risk-based regulatory framework that promotes safety and innovation and reduces regulatory duplication, consistent with section 618 of FDASIA. This provision permitted the Secretary of Health and Human Services (HHS) to form a workgroup in order to obtain broad stakeholder input from across the health care, IT, patients and innovation spectrum. The FDA, ONC, and FCC actively participated in these discussions with stakeholders from across the health care, IT, patients and innovation spectrum.
HIMSS Good Informatics Practices-GIP is aligned with FDA risk-based regulatory framework for health information technology.[4]
GIP development began in 2004 developing risk-based IT technical guidance.[5] Today the GIP peer-review and published modules are widely used as a tool for educating Health IT professionals.
Interoperable HIT will improve individual patient care, but it will also bring many public health benefits including:
evaluation of health care based on value enabled by the collection of de-identified price and quality information that can be compared
According to an article published in the International Journal of Medical Informatics, health information sharing between patients and providers helps to improve diagnosis, promotes self care, and patients also know more information about their health. The use of electronic medical records (EMRs) is still scarce now but is increasing in Canada, American and British primary care. Healthcare information in EMRs are important sources for clinical, research, and policy questions. Health information privacy (HIP) and security has been a big concern for patients and providers. Studies in Europe evaluating electronic health information poses a threat to electronic medical records and exchange of personal information.[6] Moreover, software's traceability features allow the hospitals to collect detailed information about the preparations dispensed, creating a database of every treatment that can be used for research purposes.[7]
Concepts and definitions
Health information technology (HIT) is "the application of information processing involving both computer hardware and software that deals with the storage, retrieval, sharing, and use of health care information, health data, and knowledge for communication and decision making".[8]Technology is a broad concept that deals with a species' usage and knowledge of tools and crafts, and how it affects a species' ability to control and adapt to its environment. However, a strict definition is elusive; "technology" can refer to material objects of use to humanity, such as machines, hardware or utensils, but can also encompass broader themes, including systems, methods of organization, and techniques. For HIT, technology represents computers and communications attributes that can be networked to build systems for moving health information. Informatics is yet another integral aspect of HIT.
Informatics refers to the science of information, the practice of information processing, and the engineering of information systems. Informatics underlies the academic investigation and practitioner application of computing and communications technology to healthcare, health education, and biomedical research. Health informatics refers to the intersection of information science, computer science, and health care. Health informatics describes the use and sharing of information within the healthcare industry with contributions from computer science, mathematics, and psychology. It deals with the resources, devices, and methods required for optimizing the acquisition, storage, retrieval, and use of information in health and biomedicine. Health informatics tools include not only computers but also clinical guidelines, formal medical terminologies, and information and communication systems. Medical informatics, nursing informatics, public health informatics, pharmacy informatics, and translational bioinformatics are subdisciplines that inform health informatics from different disciplinary perspectives.[9] The processes and people of concern or study are the main variables.
Implementation
The Institute of Medicine's (2001) call for the use of electronic prescribing systems in all healthcare organizations by 2010 heightened the urgency to accelerate United States hospitals' adoption of CPOE systems. In 2004, President Bush signed an Executive Order titled the President's Health Information Technology Plan, which established a ten-year plan to develop and implement electronic medical record systems across the US to improve the efficiency and safety of care. According to a study by RAND Health, the US healthcare system could save more than $81 billion annually, reduce adverse healthcare events and improve the quality of care if it were to widely adopt health information technology.[10]
The American Recovery and Reinvestment Act, signed into law in 2009 under the Obama administration, has provided approximately $19 billion in incentives for hospitals to shift from paper to electronic medical records. Meaningful Use, as a part of the 2009 Health Information Technology for Economic and Clinical Health Act (HITECH) was the incentive that included over $20 billion for the implementation of HIT alone, and provided further indication of the growing consensus regarding the potential salutary effect of HIT. The American Recovery and Reinvestment Act has set aside $2 billion which will go towards programs developed by the National Coordinator and Secretary to help healthcare providers implement HIT and provide technical assistance through various regional centers. The other $17 billion in incentives comes from Medicare and Medicaid funding for those who adopt HIT before 2015. Healthcare providers who implement electronic records can receive up to $44,000 over four years in Medicare funding and $63,750 over six years in Medicaid funding. The sooner that healthcare providers adopt the system, the more funding they receive. Those who do not adopt electronic health record systems before 2015 do not receive any federal funding.[11]
While electronic health records have potentially many advantages in terms of providing efficient and safe care, recent reports have brought to light some challenges with implementing electronic health records. The most immediate barriers for widespread adoption of this technology have been the high initial cost of implementing the new technology and the time required for doctors to train and adapt to the new system. There have also been suspected cases of fraudulent billing, where hospitals inflate their billings to Medicare. Given that healthcare providers have not reached the deadline (2015) for adopting electronic health records, it is unclear what effects this policy will have long term.[12]
One approach to reducing the costs and promoting wider use is to develop open standards related to EHRs. In 2014 there was widespread interest in a new HL7 draft standard, Fast Healthcare Interoperability Resources (FHIR), which is designed to be open, extensible, and easier to implement, benefiting from modern web technologies.[13]
Although the electronic health record (EHR), previously known as the electronic medical record (EMR), is frequently cited in the literature, there is no consensus about the definition.[15] However, there is consensus that EMRs can reduce several types of errors, including those related to prescription drugs, to preventive care, and to tests and procedures.[16] Recurring alerts remind clinicians of intervals for preventive care and track referrals and test results. Clinical guidelines for disease management have a demonstrated benefit when accessible within the electronic record during the process of treating the patient.[17] Advances in health informatics and widespread adoption of interoperable electronic health records promise access to a patient's records at any health care site. A 2005 report noted that medical practices in the United States are encountering barriers to adopting an EHR system, such as training, costs and complexity, but the adoption rate continues to rise (see chart to right).[18] Since 2002, the National Health Service of the United Kingdom has placed emphasis on introducing computers into healthcare. As of 2005, one of the largest projects for a national EHR is by the National Health Service (NHS) in the United Kingdom. The goal of the NHS is to have 60,000,000 patients with a centralized electronic health record by 2010. The plan involves a gradual roll-out commencing May 2006, providing general practices in England access to the National Programme for IT (NPfIT), the NHS component of which is known as the "Connecting for Health Programme".[19] However, recent surveys have shown physicians' deficiencies in understanding the patient safety features of the NPfIT-approved software.[20]
A main problem in HIT adoption is mainly seen by physicians, an important stakeholder to the process of EHR. The Thorn et al. article, elicited that emergency physicians noticed that health information exchange disrupted workflow and was less desirable to use, even though the main goal of EHR is improving coordination of care. The problem was seen that exchanges did not address the needs of end users, e.g. simplicity, user-friendly interface, and speed of systems.[21] The same finding was seen in an earlier article with the focus on CPOE and physician resistance to its use, Bhattacherjee et al.[22]
One opportunity for EHRs is to utilize natural language processing for searches. One systematic review of the literature found that searching and analyzing notes and text that would otherwise be inaccessible for review could be accessed through increasing collaboration between software developers and end-users of natural language processing tools within EHRs.[23]
Prescribing errors are the largest identified source of preventable errors in hospitals. A 2006 report by the Institute of Medicine estimated that a hospitalized patient is exposed to a medication error each day of his or her stay.[24]
Computerized provider order entry (CPOE), also called computerized physician order entry, can reduce total medication error rates by 80%, and adverse (serious with harm to patient) errors by 55%.[25] A 2004 survey by found that 16% of US clinics, hospitals and medical practices are expected to be utilizing CPOE within 2 years.[26] In addition to electronic prescribing, a standardized bar code system for dispensing drugs could prevent a quarter of drug errors.[24] Consumer information about the risks of the drugs and improved drug packaging (clear labels, avoiding similar drug names and dosage reminders) are other error-proofing measures. Despite ample evidence of the potential to reduce medication errors, competing systems of barcoding and electronic prescribing have slowed adoption of this technology by doctors and hospitals in the United States, due to concern with interoperability and compliance with future national standards.[27] Such concerns are not inconsequential; standards for electronic prescribing for Medicare Part D conflict with regulations in many US states.[24]
And, aside from regulatory concerns, for the small-practice physician, utilizing CPOE requires a major change in practice work flow and an additional investment of time. Many physicians are not full-time hospital staff; entering orders for their hospitalized patients means taking time away from scheduled patients.[28]
Technological innovations, opportunities, and challenges
Handwritten reports or notes, manual order entry, non-standard abbreviations and poor legibility lead to substantial errors and injuries, according to the Institute of Medicine (2000) report. The follow-up IOM (2004) report, Crossing the quality chasm: A new health system for the 21st century, advised rapid adoption of electronic patient records, electronic medication ordering, with computer- and internet-based information systems to support clinical decisions.[29] However, many system implementations have experienced costly failures.[30] Furthermore, there is evidence that CPOE may actually contribute to some types of adverse events and other medical errors.[31] For example, the period immediately following CPOE implementation resulted in significant increases in reported adverse drug events in at least one study,[32] and evidence of other errors have been reported.[25][33][34] Collectively, these reported adverse events describe phenomena related to the disruption of the complex adaptive system resulting from poorly implemented or inadequately planned technological innovation.
Technological iatrogenesis
Technology may introduce new sources of error.[35][36] Technologically induced errors are significant and increasingly more evident in care delivery systems. Terms to describe this new area of error production include the label technological iatrogenesis[37] for the process and e-iatrogenic[38] for the individual error. The sources for these errors include:
prescriber and staff inexperience may lead to a false sense of security; that when technology suggests a course of action, errors are avoided.
shortcut or default selections can override non-standard medication regimens for elderly or underweight patients, resulting in toxic doses.
CPOE and automated drug dispensing were identified as a cause of error by 84% of over 500 health care facilities participating in a surveillance system by the United States Pharmacopoeia.[39]
irrelevant or frequent warnings can interrupt work flow
Healthcare information technology can also result in iatrogenesis if design and engineering are substandard, as illustrated in a 14-part detailed analysis done at the University of Sydney.[40] Numerous examples of bias introduced by artificial intelligence (AI) have been cited as the use of AI-assisted healthcare increases. See Algorithmic bias.
Revenue Cycle HIT
The HIMSS Revenue Cycle Improvement Task Force was formed to prepare for the IT changes in the U.S. (e.g. the American Recovery and Reinvestment Act of 2009 (HITECH), Affordable Care Act, 5010 (electronic exchanges), ICD-10). An important change to the revenue cycle is the international classification of diseases (ICD) codes from 9 to 10. ICD-9 codes are set up to use three to five alphanumeric codes that represent 4,000 different types of procedures, while ICD-10 uses three to seven alphanumeric codes increasing procedural codes to 70,000. ICD-9 was outdated because there were more procedures than codes available, and to document for procedures without an ICD-9 code, unspecified codes were utilized which did not fully capture the procedures or the work involved in turn affecting reimbursement. Hence, ICD-10 was introduced to simplify the procedures with unknown codes and unify the standards closer to world standards (ICD-11). One of the main parts of Revenue Cycle HIT is charge capture, it utilizes codes to capture costs for reimbursements from different payers, such as CMS.[41]
International comparisons through HIT
International health system performance comparisons are important for understanding health system complexities and finding better opportunities, which can be done through health information technology. It gives policy makers the chance to compare and contrast the systems through established indicators from health information technology, as inaccurate comparisons can lead to adverse policies.[42]
^Winslow, Ford; Asher, Anette; Fouskarinis, Steven; Fulop, Gabor; Gomez, Damian; Ghopeh, Oscar; Jacobson, Andrew; Kim, John; Speake, Linda; Vilicich, Mark; Asher, Howard (February 2011), "Chapter 1 - Executive Summary: A framework for trusted information systems"(PDF), Good Informatics Practice (GIP), Healthcare Information and Management Systems Society (HIMSS)
^Perera, Gihan; Holbrook, Anne; Thabane, Lehana; Foster, Gary; Willison, Donald J. (February 2011). "Views on health information sharing and privacy from primary care practices using electronic medical records". International Journal of Medical Informatics. 80 (2): 94–101. doi:10.1016/j.ijmedinf.2010.11.005. PMID21167771.
^"La dosis adecuada". Cluster Salud, La Industria de la vida (in European Spanish). 23 February 2017. Retrieved 2017-03-02.
^Brailer, D. (2004). The decade of health information technology. HHS Report, July, 21.
^Furukawa M. F., Raghu T. S., Spaulding T. J., Vinze A. (2008). "Adoption Of Health Information Technology For Medication Safety In U.S. Hospitals, 2006". Health Affairs. 27 (3): 865–875. doi:10.1377/hlthaff.27.3.865. PMID18474981.{{cite journal}}: CS1 maint: multiple names: authors list (link)
^Jha, A. K., Doolan, D., Grandt, D., Scott, T. & Bates, D. W. (2008). The use of health information technology in seven nations. International Journal of Medical Informatics, corrected proof in-press.
^Ammenwerth, E., Talmon, J., Ash, J. S., Bates, D. W., Beuscart-Zephir, M. C., Duhamel, A., Elkin, P. L., Gardner, R. M., & Geissbuhler, A. (2006). Impact of CPOE on mortality rates – contradictory findings, important messages." Methods Inf Med, 45(6): 586-593.
^Campbell, E. M., Sittig, D. F., Ash, J. S., Guappone, K. P., & Dykstra, R. H. (2007). In reply to: "e-Iatrogenesis: The most critical consequence of CPOE and other HIT. Journal of the American Medical Informatics Association.
^Bradley, V. M., Steltenkamp, C. L., & Hite, K. B. (2006). Evaluation of reported medication errors before and after implementation of computerized practitioner order entry. Journal Healthc Inf Manag, 20(4): 46-53.
Mettler T (2016). "Anticipating mismatches of HIT investments: Developing a viability-fit model for e-health services". International Journal of Medical Informatics. 85 (1): 104–115. doi:10.1016/j.ijmedinf.2015.10.002. PMID26526279.
Moore, An'nita & Fisher, Kathleen (2012, March). Healthcare Information Technology and Medical-Surgical Nurse: The Emergence of a New Care Partnership. Computers, Informatics, Nursing, 30(3),157-163.
Milstein, Julia A. & Bates, David W. (2010, March–April). Paperless healthcare: Progress and challenges of an IT-enabled healthcare system. Business Horizons, 53(2), 119–130.
Ancient Egyptian religious symbol A was-sceptre w3sin hieroglyphs The was (Egyptian wꜣs power, dominion[1]) sceptre is a symbol that appeared often in relics, art, and hieroglyphs associated with the ancient Egyptian religion. It appears as a stylized animal head at the top of a long, straight staff with a forked end. Was sceptres were used as symbols of power or dominion, and were associated with ancient Egyptian deities such as Set or Anubis[2] as well as with the pharaoh....
العلاقات البلغارية المولدوفية بلغاريا مولدوفا بلغاريا مولدوفا تعديل مصدري - تعديل العلاقات البلغارية المولدوفية هي العلاقات الثنائية التي تجمع بين بلغاريا ومولدوفا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ...
25N-NBOMe Names Preferred IUPAC name 2-(2,5-Dimethoxy-4-nitrophenyl)-N-[(2-methoxyphenyl)methyl]ethan-1-amine Other names 2C-N-NBOMe, NBOMe-2C-N Identifiers CAS Number 1354632-03-3 3D model (JSmol) Interactive image ChemSpider 52085577 PubChem CID 118536028 UNII 0G7SSW2N0S Y CompTox Dashboard (EPA) DTXSID501014186 InChI InChI=1S/C18H22N2O5/c1-23-16-7-5-4-6-14(16)12-19-9-8-13-10-18(25-3)15(20(21)22)11-17(13)24-2/h4-7,10-11,19H,8-9,12H2,1-3H3Key: TXCKTIBHURMASQ-UHFFFAOYSA-N SMILES CO...
Masjid Yeni EdessaΈδεσσα Νέο ΤζαμίAgamaAfiliasiIslam – SunniProvinsiMakedonia TengahLokasiLokasiEdessaNegara YunaniArsitekturTipeMasjidGaya arsitekturTurkiDidirikan1904SpesifikasiKubah1Menara1 Masjid Yeni Edessa (bahasa Yunani: Έδεσσα Νέο Τζαμί) (bahasa Turki: Yeni Edessa Camii) (bahasa Indonesia: Masjid Baru Edessa) adalah sebuah masjid bersejarah peninggalan Kesultanan Utsmaniyah yang berada di kota Edessa, Provinsi Makedonia Tengah, Yunani, dan merupakan ...
For the unincorporated community, see Lee Creek, Arkansas. River in Oklahoma, United StatesLee CreekLee's CreekThe bridge across Lee Creek in Devil's Den State Park near Winslow, ArkansasLocationCountryUnited StatesStatesArkansas, OklahomaPhysical characteristicsSource • locationWashington County, Arkansas • coordinates35°52′42″N 94°11′51″W / 35.87840°N 94.19750°W / 35.87840; -94.19750 (Lee Creek, source) M...
1983 Hong Kong horror film This article is missing information about the film's production and theatrical release. Please expand the article to include this information. Further details may exist on the talk page. (November 2022) The Boxer's OmenTheatrical release posterDirected byKuei Chih-HungScreenplay byOn SzetoStory byChih-Hung KueiProduced byMona FongStarringPhillip KoShao-Yen LinKar-Man WaiCinematographyHsin Yeh LiEdited byChing-Shen ChenMusic byChin Yung ShingChen-Hou SuProductioncomp...
Domestic airport in Darbhanga, Bihar, India Darbhanga AirportIATA: DBRICAO: VEDH[1]SummaryAirport typeMilitary/PublicOwnerIndian Air ForceOperatorAirports Authority of IndiaServesDarbhangaLocationDarbhanga, Bihar, IndiaOpened8 November 2020 (3 years ago) (2020-11-08)Elevation AMSL171 ft / 52 mCoordinates26°11′41″N 085°55′03″E / 26.19472°N 85.91750°E / 26.19472; 85.91750MapDBRLocation of airportShow map of BiharDBRDBR (In...
Nigerian actress (born 1978) Omotola Jalade EkeindeMFROmotola at the World Economic Forum in 2015BornOmotola Jalade (1978-02-07) 7 February 1978 (age 46)Lagos State, NigeriaNationalityNigerianOther namesOmo Sexy Omotola Jolade Ekeinde Omotola Jalade Omotola EkeindeCitizenshipNigerianAlma mater Obafemi Awolowo University Yaba College of Technology Chrisland Schools OccupationsActresssingerformer modelYears active1995–presentSpouseCaptain Matthew EkeindeChildren4 Omotola J...
President of Honduras from 2006 to 2009 In this Spanish name, the first or paternal surname is Zelaya and the second or maternal family name is Rosales. Manuel ZelayaZelaya at his wife's presidential inauguration in 2022First Gentleman of HondurasIncumbentAssumed role 27 January 2022PresidentXiomara CastroPreceded byAna García Carías(as First Lady)Deputy of the Olancho DepartmentIn office25 January 2014 – 25 January 2018Leader of LibreIncumbentAssumed office 26 Ju...
KRI Teluk Ratai (509) di Palembang pada 2013 Sejarah Amerika Serikat Nama LST-678 Ganti nama Presque Isle, 31 Maret 1945 Asal nama Presque Isle County, MichiganPembangun American Bridge Company, Ambridge, PennsylvaniaPasang lunas 29 April 1944Diluncurkan 16 Juni 1944Mulai berlayar 30 Juni 1944Dipensiunkan 18 April 1947Dicoret 1 Mei 1959Identifikasi Nomor lambung: APB-44 Tanda panggil: NFLK[1] Nomor IMO: 5159870 Nasib Dijual sebagai kapal dagang sipil Indonesia Nama Teluk RataiAs...
Archaeological site in Arizona, United States United States historic placeDouble Adobe siteU.S. National Register of Historic PlacesU.S. National Historic Landmark Show map of ArizonaShow map of the United StatesNearest cityDouglas, ArizonaCoordinates31°21′N 109°32′W / 31.350°N 109.533°W / 31.350; -109.533NRHP reference No.66000169Significant datesAdded to NRHPOctober 15, 1966[1]Designated NHLJanuary 20, 1961[2] The Double Adobe s...
Liga Champions UEFA 2011–2012Allianz Arena di Munich menjadi tuan rumah final.Informasi turnamenJadwalpenyelenggaraanKualifikasi:28 Juni – 24 Agustus 2011Kompetisi utama:13 September 2011 – 19 Mei 2012Jumlahtim pesertaKompetisi utama: 32Total: 76 (dari 52 asosiasi)Hasil turnamenJuara Chelsea (gelar ke-1)Tempat kedua Bayern MunichStatistik turnamenJumlahpertandingan125Jumlah gol345 (2,76 per pertandingan)Pencetak golterbanyakLionel Messi (Barcelona)14 gol← 2010–2011 201...
Muro de contención: apeo con talud Se llama talud a la inclinación que se da a las tierras para que se sostengan las unas a las otras. El perfil de cualquier talud se forma por un triángulo rectángulo, en el cual el lado mayor, opuesto al ángulo recto, representa el talud o declivio y uno de los lados representa la base del talud con los nombres de escarpa explanada o glacis. Cuando la altura es igual o mayor que la base se llama escarpa, lo que también conviene al revestimiento de una ...
American football player (born 1934) American football player Sonny JurgensenJurgensen in 2017No. 9Position:QuarterbackPersonal informationBorn: (1934-08-23) August 23, 1934 (age 89)Wilmington, North Carolina, U.S.Height:5 ft 11 in (1.80 m)Weight:202 lb (92 kg)Career informationHigh school:New Hanover (Wilmington, North Carolina)College:Duke (1953–1956)NFL draft:1957 / Round: 4 / Pick: 43Career history Philadelphia Eagles (1957–1963) Washi...
Study of relationship between legal systems Legal Systems of the World Comparative law is the study of differences and similarities between the law (legal systems) of different countries. More specifically, it involves the study of the different legal systems (or families) in existence in the world, including the common law, the civil law, socialist law, Canon law, Jewish Law, Islamic law, Hindu law, and Chinese law. It includes the description and analysis of foreign legal systems, even wher...
Ethnic group in Russia Ethnic group Chinese people in RussiaTotal population19,644 (official census 2021)[1]Regions with significant populationsMoscow, Russian Far EastLanguagesChinese, RussianReligionBuddhism, Christianity, Eastern Orthodoxy, Chinese Orthodox Church, Islam, TaoismRelated ethnic groupsOverseas Chinese Ethnic Chinese in Russia officially numbered 39,483 according to the 2002 census.[2] However, this figure is contested, with the Overseas Community Affairs Counc...
Questa voce o sezione sull'argomento edizioni di competizioni calcistiche non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Serie C 1966-1967 Competizione Serie C Sport Calcio Edizione 29ª Organizzatore Lega Nazionale Semiprofessionisti Date dal 25 settembre 1966al 28 maggio 1967 Luogo Italia...
Italian one-day cycling race, and one of the five monuments Milan–San RemoRace detailsDateMid-MarchRegionNorthwest ItalyEnglish nameMilan–San RemoLocal name(s)Milano–Sanremo (in Italian)Nickname(s)La Classicissima di primavera (in Italian)DisciplineRoadCompetitionUCI World TourTypeOne-day cycling raceOrganiserRCS SportRace directorMauro VegniWeb sitewww.milanosanremo.it HistoryFirst edition1907 (1907)Editions115 (as of 2024)First winner Lucien Pet...