Hankel transform

In mathematics, the Hankel transform expresses any given function f(r) as the weighted sum of an infinite number of Bessel functions of the first kind Jν(kr). The Bessel functions in the sum are all of the same order ν, but differ in a scaling factor k along the r axis. The necessary coefficient Fν of each Bessel function in the sum, as a function of the scaling factor k constitutes the transformed function. The Hankel transform is an integral transform and was first developed by the mathematician Hermann Hankel. It is also known as the Fourier–Bessel transform. Just as the Fourier transform for an infinite interval is related to the Fourier series over a finite interval, so the Hankel transform over an infinite interval is related to the Fourier–Bessel series over a finite interval.

Definition

The Hankel transform of order of a function f(r) is given by

where is the Bessel function of the first kind of order with . The inverse Hankel transform of Fν(k) is defined as

which can be readily verified using the orthogonality relationship described below.

Domain of definition

Inverting a Hankel transform of a function f(r) is valid at every point at which f(r) is continuous, provided that the function is defined in (0, ∞), is piecewise continuous and of bounded variation in every finite subinterval in (0, ∞), and

However, like the Fourier transform, the domain can be extended by a density argument to include some functions whose above integral is not finite, for example .

Alternative definition

An alternative definition says that the Hankel transform of g(r) is[1]

The two definitions are related:

If , then

This means that, as with the previous definition, the Hankel transform defined this way is also its own inverse:

The obvious domain now has the condition

but this can be extended. According to the reference given above, we can take the integral as the limit as the upper limit goes to infinity (an improper integral rather than a Lebesgue integral), and in this way the Hankel transform and its inverse work for all functions in L2(0, ∞).

Transforming Laplace's equation

The Hankel transform can be used to transform and solve Laplace's equation expressed in cylindrical coordinates. Under the Hankel transform, the Bessel operator becomes a multiplication by .[2] In the axisymmetric case, the partial differential equation is transformed as

where . Therefore, the Laplacian in cylindrical coordinates becomes an ordinary differential equation in the transformed function .

Orthogonality

The Bessel functions form an orthogonal basis with respect to the weighting factor r:[3]

The Plancherel theorem and Parseval's theorem

If f(r) and g(r) are such that their Hankel transforms Fν(k) and Gν(k) are well defined, then the Plancherel theorem states

Parseval's theorem, which states

is a special case of the Plancherel theorem. These theorems can be proven using the orthogonality property.

Relation to the multidimensional Fourier transform

The Hankel transform appears when one writes the multidimensional Fourier transform in hyperspherical coordinates, which is the reason why the Hankel transform often appears in physical problems with cylindrical or spherical symmetry.

Consider a function of a -dimensional vector r. Its -dimensional Fourier transform is defined asTo rewrite it in hyperspherical coordinates, we can use the decomposition of a plane wave into -dimensional hyperspherical harmonics :[4]where and are the sets of all hyperspherical angles in the -space and -space. This gives the following expression for the -dimensional Fourier transform in hyperspherical coordinates:If we expand and in hyperspherical harmonics:the Fourier transform in hyperspherical coordinates simplifies toThis means that functions with angular dependence in form of a hyperspherical harmonic retain it upon the multidimensional Fourier transform, while the radial part undergoes the Hankel transform (up to some extra factors like ).

Special cases

Fourier transform in two dimensions

If a two-dimensional function f(r) is expanded in a multipole series,

then its two-dimensional Fourier transform is given bywhereis the -th order Hankel transform of (in this case plays the role of the angular momentum, which was denoted by in the previous section).

Fourier transform in three dimensions

If a three-dimensional function f(r) is expanded in a multipole series over spherical harmonics,

then its three-dimensional Fourier transform is given bywhereis the Hankel transform of of order .

This kind of Hankel transform of half-integer order is also known as the spherical Bessel transform.

Fourier transform in d dimensions (radially symmetric case)

If a d-dimensional function f(r) does not depend on angular coordinates, then its d-dimensional Fourier transform F(k) also does not depend on angular coordinates and is given by[5]which is the Hankel transform of of order up to a factor of .

2D functions inside a limited radius

If a two-dimensional function f(r) is expanded in a multipole series and the expansion coefficients fm are sufficiently smooth near the origin and zero outside a radius R, the radial part f(r)/rm may be expanded into a power series of 1 − (r/R)^2:

such that the two-dimensional Fourier transform of f(r) becomes

where the last equality follows from §6.567.1 of.[6] The expansion coefficients fm,t are accessible with discrete Fourier transform techniques:[7] if the radial distance is scaled with

the Fourier-Chebyshev series coefficients g emerge as

Using the re-expansion

yields fm,t expressed as sums of gm,j.

This is one flavor of fast Hankel transform techniques.

Relation to the Fourier and Abel transforms

The Hankel transform is one member of the FHA cycle of integral operators. In two dimensions, if we define A as the Abel transform operator, F as the Fourier transform operator, and H as the zeroth-order Hankel transform operator, then the special case of the projection-slice theorem for circularly symmetric functions states that

In other words, applying the Abel transform to a 1-dimensional function and then applying the Fourier transform to that result is the same as applying the Hankel transform to that function. This concept can be extended to higher dimensions.

Numerical evaluation

A simple and efficient approach to the numerical evaluation of the Hankel transform is based on the observation that it can be cast in the form of a convolution by a logarithmic change of variables[8] In these new variables, the Hankel transform reads where

Now the integral can be calculated numerically with complexity using fast Fourier transform. The algorithm can be further simplified by using a known analytical expression for the Fourier transform of :[9] The optimal choice of parameters depends on the properties of in particular its asymptotic behavior at and

This algorithm is known as the "quasi-fast Hankel transform", or simply "fast Hankel transform".

Since it is based on fast Fourier transform in logarithmic variables, has to be defined on a logarithmic grid. For functions defined on a uniform grid, a number of other algorithms exist, including straightforward quadrature, methods based on the projection-slice theorem, and methods using the asymptotic expansion of Bessel functions.[10]

Some Hankel transform pairs

[11]

Expressable in terms of elliptic integrals.[12]

Kn(z) is a modified Bessel function of the second kind. K(z) is the complete elliptic integral of the first kind.

The expression

coincides with the expression for the Laplace operator in polar coordinates ( k, θ ) applied to a spherically symmetric function F0(k) .

The Hankel transform of Zernike polynomials are essentially Bessel Functions (Noll 1976):

for even nm ≥ 0.

See also

References

  1. ^ Louis de Branges (1968). Hilbert spaces of entire functions. London: Prentice-Hall. p. 189. ISBN 978-0133889000.
  2. ^ Poularikas, Alexander D. (1996). The transforms and applications handbook. Boca Raton Fla.: CRC Press. ISBN 0-8493-8342-0. OCLC 32237017.
  3. ^ Ponce de Leon, J. (2015). "Revisiting the orthogonality of Bessel functions of the first kind on an infinite interval". European Journal of Physics. 36 (1): 015016. Bibcode:2015EJPh...36a5016P. doi:10.1088/0143-0807/36/1/015016.
  4. ^ Avery, James Emil. Hyperspherical harmonics and their physical applications. ISBN 978-981-322-930-3. OCLC 1013827621.
  5. ^ Faris, William G. (2008-12-06). "Radial functions and the Fourier transform: Notes for Math 583A, Fall 2008" (PDF). University of Arizona, Department of Mathematics. Retrieved 2015-04-25.
  6. ^ Gradshteyn, I. S.; Ryzhik, I. M. (2015). Zwillinger, Daniel (ed.). Table of Integrals, Series, and Products (Eighth ed.). Academic Press. p. 687. ISBN 978-0-12-384933-5.
  7. ^ Secada, José D. (1999). "Numerical evaluation of the Hankel transform". Comput. Phys. Commun. 116 (2–3): 278–294. Bibcode:1999CoPhC.116..278S. doi:10.1016/S0010-4655(98)00108-8.
  8. ^ Siegman, A.E. (1977-07-01). "Quasi fast Hankel transform". Optics Letters. 1 (1): 13. Bibcode:1977OptL....1...13S. doi:10.1364/ol.1.000013. ISSN 0146-9592. PMID 19680315.
  9. ^ Talman, James D. (October 1978). "Numerical Fourier and Bessel transforms in logarithmic variables". Journal of Computational Physics. 29 (1): 35–48. Bibcode:1978JCoPh..29...35T. doi:10.1016/0021-9991(78)90107-9. ISSN 0021-9991.
  10. ^ Cree, M. J.; Bones, P. J. (July 1993). "Algorithms to numerically evaluate the Hankel transform". Computers & Mathematics with Applications. 26 (1): 1–12. doi:10.1016/0898-1221(93)90081-6. ISSN 0898-1221.
  11. ^ Papoulis, Athanasios (1981). Systems and Transforms with Applications to Optics. Florida USA: Krieger Publishing Company. pp. 140–175. ISBN 978-0898743586.
  12. ^ Kausel, E.; Irfan Baig, M.M. (2012). "Laplace transform of products of Bessel functions: A visitation of earlier formulas" (PDF). Quarterly of Applied Mathematics. 70: 77–97. doi:10.1090/s0033-569x-2011-01239-2. hdl:1721.1/78923.

Read other articles:

Rationalist Association of IndiaAbbreviationRAIFounded1930; 94 years ago (1930)TypeNon-profitPurposeAdvocacy of rationalism, atheism, secularism, humanismLocationIndiaFounder PresidentDr. D' AvoineCurrent ChairmanSreeni PattathanamAffiliationsVoting member at International Humanist and Ethical Union (IHEU) Rationalist Association of India (RAI) is an Indian rationalist organization that was established in 1930.[1] Dr. D' Avoine was the President of the Rationalist A...

 

Shūnan 周南市Kota BenderaLambangLokasi Shūnan di Prefektur YamaguchiNegara JepangWilayahChūgokuPrefektur YamaguchiPemerintahan • Wali kotaRitsuko FujiiLuas • Total656 km2 (253 sq mi)Populasi (Oktober 1, 2015) • Total144.842 • Kepadatan220,8/km2 (5,720/sq mi)Zona waktuUTC+09:00 (JST)Kode pos745-8655Simbol • PohonCinnamomum camphora• BungaSalvia splendensNomor telepon0834-22-8211Alamat1-1 Kisa...

 

Danau VanDanau Van dari luar angkasaKoordinat38°38′N 42°49′E / 38.633°N 42.817°E / 38.633; 42.817Koordinat: 38°38′N 42°49′E / 38.633°N 42.817°E / 38.633; 42.817Jenis perairanDanau garamAliran masuk utamaKarasu, Hoşap, Güzelsu, Bendimahi, Zilan dan aliran Yeniköprü[1]Aliran keluar utamatidak adaWilayah tangkapan air12.500 km2 (4.800 sq mi)[1]Terletak di negaraTurkiPanjang maksimal119 km (74&...

Hereford Katedral Hereford dan Jembatan Wye Population 58,896 [1] Ref. grid OS SO515405     - London  135.7m  Paroki sipil Hereford Otoritas kesatuan Herefordshire County seremonial Herefordshire Wilayah Negara konstituen Inggris Negara berdaulat Britania Raya Kota pos HEREFORD Distrik kode pos HR1-HR4 Kode telepon 01432 Polisi Pemadam kebakaran Ambulans Parlemen UE [[West Midlands (konstituensi Parl...

 

Bagian dari seri tentang Gnostisisme Gnostisisme Persia Mandaeisme Manikheisme Gnostisisme Suriah-Mesir Setian Tomasin Valentinian Basilidean Para Bapak Gnostisisme Kristen Simon Magus Cerinthus Marsion Valentinius Gnostisisme Awal Ofit Keni Karpokratian Borborit Gnostisisme Pertengahan Bogomil Kathar Teks-teks Gnostik Perpustakaan Nag Hammadi Kisah perbuatan Tomas Allogenes 1 Wahyu Yakobus 2 Wahyu Yakobus Apokrifon Yohanes Kitab-kitab Jeu Percakapan Juruselamat Wahyu Koptik Paulus Injil Kop...

 

PT-32, salah satu dari empat kapal patroli torpedo yang terlibat Pada tanggal 11 Maret 1942, saat berlangsungnya Perang Dunia II, Jenderal Douglas MacArthur beserta anggota keluarga, staf, serta pasukannya. Mereka meninggalkan pulau Corregidor di Filipina yang sedang dikepung oleh Jepang. Mereka melakukan perjalanan menggunakan kapal PT melintasi lautan badai yang dipatroli oleh kapal perang Jepang dan berhasil mencapai Mindanao dua hari kemudian. Dari sana, MacArthur dan rombongannya terbang...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Bendera Afrika Tengah – berita · surat kabar · buku · cendekiawan · JSTOR Bendera Republik Afrika Tengah Pemakaian Bendera nasional Perbandingan 3:5, 2:3 Dipakai 1 Desember 1958 Rancangan Empat garis men...

 

This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (June 2020) (Learn how and when to remove this template message) Slanec Castle Slanec (German: Salzburg; Hungarian: Nagyszalánc; Latin: Castrum Salis) is a village and municipality in Košice-okolie District in the Košice Region of eastern Slovakia. History In historical recor...

 

Voce principale: UEFA Europa League 2017-2018. UEFA Europa League 2017-2018 - Fase a gironiUEFA Europa League 2017-2018 - Group stage Competizione UEFA Europa League Sport Calcio Edizione 47ª Organizzatore UEFA Date dal 14 settembre 2017al 7 dicembre 2017 Partecipanti 48 Statistiche Miglior marcatore Júnior Moraes (6) Emiliano Rigoni (6) André Silva (6) Incontri disputati 144 Gol segnati 381 (2,65 per incontro) Pubblico 2 443 067 (16 966 per incontro) Cron...

Head of state and head of government of Sierra Leone President of the Republic of Sierra LeonePresidential standardIncumbentJulius Maada Wonie Biosince 4 April 2018StyleHis/Her ExcellencyResidenceState House (official workplace)State Lodge (official residence)Term lengthFive years(renewable once)Constituting instrumentConstitution of Sierra LeonePrecursorQueen of Sierra LeoneFormation19 April 1971; 53 years ago (1971-04-19)First holderChristopher Okoro Cole (acting)Depu...

 

Canadian video game developer Maddy ThorsonThorson in 2021Born (1988-03-18) 18 March 1988 (age 36)NationalityCanadianOccupationVideo game developerNotable workTowerFall, Celeste Madeline Stephanie Thorson (born 18 March 1988; formerly known as Matt Thorson) is a Canadian video game developer, known as one of the lead creators for the video games TowerFall and Celeste, developed under the studio Maddy Makes Games (previously Matt Makes Games). Since September 2019, Thorson has worked as D...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

غرفة تجارية قالب:إنغليزية هي مؤسسة خدمية تهدف إلى نوع من التضامن التجاري بين التجار.[1][2][3] حيث يقوم أصحاب العمل التجاري في المدن والمقاطعات بإنشاء هذه المؤسسة بهدف تنظيم قطاع عملهم والحفاظ على مصالحهم. أعضاء هذه المؤسسة الخدمية والذين ينضمون إليها من التجار ي�...

 

College softball team Northern Illinois HuskiessoftballFounded1959UniversityNorthern Illinois UniversityHead coachChristina Sutcliffe (7th season)ConferenceMACLocationDeKalb, ILHome stadiumMary M. Bell Field (Capacity: 600)NicknameHuskiesColorsCardinal and black[1]   NCAA WCWS appearances1988NCAA Tournament appearances1988, 1996Conference Tournament championships1996 (MCC)Regular Season Conference championships1988, 1989, 1990 (NSC)1996 (MCC)1999, 2000 (M...

 

Extensive and thorough search for a wanted fugitive This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Manhunt law enforcement – news · newspapers · books · scholar · JSTOR (January 2013) (Learn how and when to remove this message) Look up manhunt or man hunt in Wiktionary, the free dictionary. In law...

For the military intervention in the Gambia, see Operation Restore Democracy. International military intervention in Haiti following the 1991 coup d'etat This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The examples and perspective in this article deal primarily with the United States and do not represent a worldwide view of the subject. You may improve this article, discuss the issue on t...

 

This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (September 2022) (Learn how and when to remove this message) Nevis Historical and Conservation SocietyThe main museum building in NevisAbbreviationNHC...

 

Барвінкове Герб Барвінкового Прапор Барвінкового Краєвид на засніжене Барвінкове з щогли ретранслятора в сутінки (наприкінці листопада) Основні дані Країна  Україна Область Харківська область Район Ізюмський район Громада Барвінківська міська громада Код КАТОТТГ:...

Roeslan Abdulgani Wakil Perdana Menteri Ke-15Masa jabatan18 Maret 1966 – 27 Maret 1966Menjabat bersama Sri Sultan Hamengkubuwana IX, Johannes Leimena, Idham Chalid, Dan Adam MalikPresidenSoekarnoPendahuluSoebandrio, Johannes Leimena, Chaerul SalehPenggantiSri Sultan Hamengkubuwana IX, Johannes Leimena, Idham Chalid, Adam Malik, Dan SoehartoMenteri Penerangan Indonesia ke-15Masa jabatan13 November 1963 – 27 Agustus 1964PresidenSoekarnoPendahuluMohammad Yam...

 

Hannibal GoodwinLahir(1822-04-21)21 April 1822Taughannock, New YorkMeninggal31 Desember 1900(1900-12-31) (umur 78) Hannibal Williston Goodwin (21 April 1822 – 31 Desember 1900), adalah seorang pendeta episkopal di Rumah Doa Gereja Episkopal dan Pastoran di Newark, New Jersey, pembuat gulungan tembus cahaya keluaran film dari dasar film nitroselulosa, yang digunakan pada Kinetoskop milik Thomas Edison, mesin awal untuk melihat sebuah animasi.[1] Referensi ^ Greg Hatala (17 Dece...