In mathematics, the Hankel transform expresses any given function f(r) as the weighted sum of an infinite number of Bessel functions of the first kindJν(kr). The Bessel functions in the sum are all of the same order ν, but differ in a scaling factor k along the r axis. The necessary coefficient Fν of each Bessel function in the sum, as a function of the scaling factor k constitutes the transformed function. The Hankel transform is an integral transform and was first developed by the mathematician Hermann Hankel. It is also known as the Fourier–Bessel transform. Just as the Fourier transform for an infinite interval is related to the Fourier series over a finite interval, so the Hankel transform over an infinite interval is related to the Fourier–Bessel series over a finite interval.
Definition
The Hankel transform of order of a function f(r) is given by
where is the Bessel function of the first kind of order with . The inverse Hankel transform of Fν(k) is defined as
which can be readily verified using the orthogonality relationship described below.
Domain of definition
Inverting a Hankel transform of a function f(r) is valid at every point at which f(r) is continuous, provided that the function is defined in (0, ∞), is piecewise continuous and of bounded variation in every finite subinterval in (0, ∞), and
However, like the Fourier transform, the domain can be extended by a density argument to include some functions whose above integral is not finite, for example .
Alternative definition
An alternative definition says that the Hankel transform of g(r) is[1]
The two definitions are related:
If , then
This means that, as with the previous definition, the Hankel transform defined this way is also its own inverse:
The obvious domain now has the condition
but this can be extended. According to the reference given above, we can take the integral as the limit as the upper limit goes to infinity (an improper integral rather than a Lebesgue integral), and in this way the Hankel transform and its inverse work for all functions in L2(0, ∞).
Transforming Laplace's equation
The Hankel transform can be used to transform and solve Laplace's equation expressed in cylindrical coordinates. Under the Hankel transform, the Bessel operator becomes a multiplication by .[2] In the axisymmetric case, the partial differential equation is transformed as
where . Therefore, the Laplacian in cylindrical coordinates becomes an ordinary differential equation in the transformed function .
Orthogonality
The Bessel functions form an orthogonal basis with respect to the weighting factor r:[3]
The Plancherel theorem and Parseval's theorem
If f(r) and g(r) are such that their Hankel transforms Fν(k) and Gν(k) are well defined, then the Plancherel theorem states
is a special case of the Plancherel theorem. These theorems can be proven using the orthogonality property.
Relation to the multidimensional Fourier transform
The Hankel transform appears when one writes the multidimensional Fourier transform in hyperspherical coordinates, which is the reason why the Hankel transform often appears in physical problems with cylindrical or spherical symmetry.
Consider a function of a -dimensional vector r. Its -dimensional Fourier transform is defined asTo rewrite it in hyperspherical coordinates, we can use the decomposition of a plane wave into -dimensional hyperspherical harmonics :[4]where and are the sets of all hyperspherical angles in the -space and -space. This gives the following expression for the -dimensional Fourier transform in hyperspherical coordinates:If we expand and in hyperspherical harmonics:the Fourier transform in hyperspherical coordinates simplifies toThis means that functions with angular dependence in form of a hyperspherical harmonic retain it upon the multidimensional Fourier transform, while the radial part undergoes the Hankel transform (up to some extra factors like ).
Special cases
Fourier transform in two dimensions
If a two-dimensional function f(r) is expanded in a multipole series,
then its two-dimensional Fourier transform is given bywhereis the -th order Hankel transform of (in this case plays the role of the angular momentum, which was denoted by in the previous section).
then its three-dimensional Fourier transform is given bywhereis the Hankel transform of of order .
This kind of Hankel transform of half-integer order is also known as the spherical Bessel transform.
Fourier transform in d dimensions (radially symmetric case)
If a d-dimensional function f(r) does not depend on angular coordinates, then its d-dimensional Fourier transform F(k) also does not depend on angular coordinates and is given by[5]which is the Hankel transform of of order up to a factor of .
2D functions inside a limited radius
If a two-dimensional function f(r) is expanded in a multipole series and the expansion coefficients fm are sufficiently smooth near the origin and zero outside a radius R, the radial part f(r)/rm may be expanded into a power series of 1 − (r/R)^2:
such that the two-dimensional Fourier transform of f(r) becomes
where the last equality follows from §6.567.1 of.[6] The expansion coefficients fm,t are accessible with discrete Fourier transform techniques:[7] if the radial distance is scaled with
the Fourier-Chebyshev series coefficients g emerge as
Using the re-expansion
yields fm,t expressed as sums of gm,j.
This is one flavor of fast Hankel transform techniques.
Relation to the Fourier and Abel transforms
The Hankel transform is one member of the FHA cycle of integral operators. In two dimensions, if we define A as the Abel transform operator, F as the Fourier transform operator, and H as the zeroth-order Hankel transform operator, then the special case of the projection-slice theorem for circularly symmetric functions states that
In other words, applying the Abel transform to a 1-dimensional function and then applying the Fourier transform to that result is the same as applying the Hankel transform to that function. This concept can be extended to higher dimensions.
Numerical evaluation
A simple and efficient approach to the numerical evaluation of the Hankel transform is based on the observation that it can be cast in the form of a convolution by a logarithmic change of variables[8]
In these new variables, the Hankel transform reads
where
Now the integral can be calculated numerically with complexity using fast Fourier transform. The algorithm can be further simplified by using a known analytical expression for the Fourier transform of :[9]
The optimal choice of parameters depends on the properties of in particular its asymptotic behavior at and
This algorithm is known as the "quasi-fast Hankel transform", or simply "fast Hankel transform".
Since it is based on fast Fourier transform in logarithmic variables, has to be defined on a logarithmic grid. For functions defined on a uniform grid, a number of other algorithms exist, including straightforward quadrature, methods based on the projection-slice theorem, and methods using the asymptotic expansion of Bessel functions.[10]
^Gradshteyn, I. S.; Ryzhik, I. M. (2015). Zwillinger, Daniel (ed.). Table of Integrals, Series, and Products (Eighth ed.). Academic Press. p. 687. ISBN978-0-12-384933-5.
^Papoulis, Athanasios (1981). Systems and Transforms with Applications to Optics. Florida USA: Krieger Publishing Company. pp. 140–175. ISBN978-0898743586.
Magni, Vittorio; Cerullo, Giulio; De Silverstri, Sandro (1992). "High-accuracy fast Hankel transform for optical beam propagation". J. Opt. Soc. Am. A. 9 (11): 2031–2033. Bibcode:1992JOSAA...9.2031M. doi:10.1364/JOSAA.9.002031.
Agnesi, A.; Reali, Giancarlo C.; Patrini, G.; Tomaselli, A. (1993). "Numerical evaluation of the Hankel transform: remarks". Journal of the Optical Society of America A. 10 (9): 1872. Bibcode:1993JOSAA..10.1872A. doi:10.1364/JOSAA.10.001872.
Gizar-Sicairos, Manuel; Guitierrez-Vega, Julio C. (2004). "Computation of quasi-discrete Hankel transform of integer order for propagating optical wave fields". J. Opt. Soc. Am. A. 21 (1): 53–58. Bibcode:2004JOSAA..21...53G. doi:10.1364/JOSAA.21.000053. PMID14725397.
Rationalist Association of IndiaAbbreviationRAIFounded1930; 94 years ago (1930)TypeNon-profitPurposeAdvocacy of rationalism, atheism, secularism, humanismLocationIndiaFounder PresidentDr. D' AvoineCurrent ChairmanSreeni PattathanamAffiliationsVoting member at International Humanist and Ethical Union (IHEU) Rationalist Association of India (RAI) is an Indian rationalist organization that was established in 1930.[1] Dr. D' Avoine was the President of the Rationalist A...
Danau VanDanau Van dari luar angkasaKoordinat38°38′N 42°49′E / 38.633°N 42.817°E / 38.633; 42.817Koordinat: 38°38′N 42°49′E / 38.633°N 42.817°E / 38.633; 42.817Jenis perairanDanau garamAliran masuk utamaKarasu, Hoşap, Güzelsu, Bendimahi, Zilan dan aliran Yeniköprü[1]Aliran keluar utamatidak adaWilayah tangkapan air12.500 km2 (4.800 sq mi)[1]Terletak di negaraTurkiPanjang maksimal119 km (74&...
Hereford Katedral Hereford dan Jembatan Wye Population 58,896 [1] Ref. grid OS SO515405 - London 135.7m Paroki sipil Hereford Otoritas kesatuan Herefordshire County seremonial Herefordshire Wilayah Negara konstituen Inggris Negara berdaulat Britania Raya Kota pos HEREFORD Distrik kode pos HR1-HR4 Kode telepon 01432 Polisi Pemadam kebakaran Ambulans Parlemen UE [[West Midlands (konstituensi Parl...
Bagian dari seri tentang Gnostisisme Gnostisisme Persia Mandaeisme Manikheisme Gnostisisme Suriah-Mesir Setian Tomasin Valentinian Basilidean Para Bapak Gnostisisme Kristen Simon Magus Cerinthus Marsion Valentinius Gnostisisme Awal Ofit Keni Karpokratian Borborit Gnostisisme Pertengahan Bogomil Kathar Teks-teks Gnostik Perpustakaan Nag Hammadi Kisah perbuatan Tomas Allogenes 1 Wahyu Yakobus 2 Wahyu Yakobus Apokrifon Yohanes Kitab-kitab Jeu Percakapan Juruselamat Wahyu Koptik Paulus Injil Kop...
PT-32, salah satu dari empat kapal patroli torpedo yang terlibat Pada tanggal 11 Maret 1942, saat berlangsungnya Perang Dunia II, Jenderal Douglas MacArthur beserta anggota keluarga, staf, serta pasukannya. Mereka meninggalkan pulau Corregidor di Filipina yang sedang dikepung oleh Jepang. Mereka melakukan perjalanan menggunakan kapal PT melintasi lautan badai yang dipatroli oleh kapal perang Jepang dan berhasil mencapai Mindanao dua hari kemudian. Dari sana, MacArthur dan rombongannya terbang...
Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Bendera Afrika Tengah – berita · surat kabar · buku · cendekiawan · JSTOR Bendera Republik Afrika Tengah Pemakaian Bendera nasional Perbandingan 3:5, 2:3 Dipakai 1 Desember 1958 Rancangan Empat garis men...
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (June 2020) (Learn how and when to remove this template message) Slanec Castle Slanec (German: Salzburg; Hungarian: Nagyszalánc; Latin: Castrum Salis) is a village and municipality in Košice-okolie District in the Košice Region of eastern Slovakia. History In historical recor...
Voce principale: UEFA Europa League 2017-2018. UEFA Europa League 2017-2018 - Fase a gironiUEFA Europa League 2017-2018 - Group stage Competizione UEFA Europa League Sport Calcio Edizione 47ª Organizzatore UEFA Date dal 14 settembre 2017al 7 dicembre 2017 Partecipanti 48 Statistiche Miglior marcatore Júnior Moraes (6) Emiliano Rigoni (6) André Silva (6) Incontri disputati 144 Gol segnati 381 (2,65 per incontro) Pubblico 2 443 067 (16 966 per incontro) Cron...
Head of state and head of government of Sierra Leone President of the Republic of Sierra LeonePresidential standardIncumbentJulius Maada Wonie Biosince 4 April 2018StyleHis/Her ExcellencyResidenceState House (official workplace)State Lodge (official residence)Term lengthFive years(renewable once)Constituting instrumentConstitution of Sierra LeonePrecursorQueen of Sierra LeoneFormation19 April 1971; 53 years ago (1971-04-19)First holderChristopher Okoro Cole (acting)Depu...
Canadian video game developer Maddy ThorsonThorson in 2021Born (1988-03-18) 18 March 1988 (age 36)NationalityCanadianOccupationVideo game developerNotable workTowerFall, Celeste Madeline Stephanie Thorson (born 18 March 1988; formerly known as Matt Thorson) is a Canadian video game developer, known as one of the lead creators for the video games TowerFall and Celeste, developed under the studio Maddy Makes Games (previously Matt Makes Games). Since September 2019, Thorson has worked as D...
غرفة تجارية قالب:إنغليزية هي مؤسسة خدمية تهدف إلى نوع من التضامن التجاري بين التجار.[1][2][3] حيث يقوم أصحاب العمل التجاري في المدن والمقاطعات بإنشاء هذه المؤسسة بهدف تنظيم قطاع عملهم والحفاظ على مصالحهم. أعضاء هذه المؤسسة الخدمية والذين ينضمون إليها من التجار ي�...
Extensive and thorough search for a wanted fugitive This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Manhunt law enforcement – news · newspapers · books · scholar · JSTOR (January 2013) (Learn how and when to remove this message) Look up manhunt or man hunt in Wiktionary, the free dictionary. In law...
For the military intervention in the Gambia, see Operation Restore Democracy. International military intervention in Haiti following the 1991 coup d'etat This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The examples and perspective in this article deal primarily with the United States and do not represent a worldwide view of the subject. You may improve this article, discuss the issue on t...
This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (September 2022) (Learn how and when to remove this message) Nevis Historical and Conservation SocietyThe main museum building in NevisAbbreviationNHC...
Барвінкове Герб Барвінкового Прапор Барвінкового Краєвид на засніжене Барвінкове з щогли ретранслятора в сутінки (наприкінці листопада) Основні дані Країна Україна Область Харківська область Район Ізюмський район Громада Барвінківська міська громада Код КАТОТТГ:...
Roeslan Abdulgani Wakil Perdana Menteri Ke-15Masa jabatan18 Maret 1966 – 27 Maret 1966Menjabat bersama Sri Sultan Hamengkubuwana IX, Johannes Leimena, Idham Chalid, Dan Adam MalikPresidenSoekarnoPendahuluSoebandrio, Johannes Leimena, Chaerul SalehPenggantiSri Sultan Hamengkubuwana IX, Johannes Leimena, Idham Chalid, Adam Malik, Dan SoehartoMenteri Penerangan Indonesia ke-15Masa jabatan13 November 1963 – 27 Agustus 1964PresidenSoekarnoPendahuluMohammad Yam...
Hannibal GoodwinLahir(1822-04-21)21 April 1822Taughannock, New YorkMeninggal31 Desember 1900(1900-12-31) (umur 78) Hannibal Williston Goodwin (21 April 1822 – 31 Desember 1900), adalah seorang pendeta episkopal di Rumah Doa Gereja Episkopal dan Pastoran di Newark, New Jersey, pembuat gulungan tembus cahaya keluaran film dari dasar film nitroselulosa, yang digunakan pada Kinetoskop milik Thomas Edison, mesin awal untuk melihat sebuah animasi.[1] Referensi ^ Greg Hatala (17 Dece...