In some cases, Hamming graphs may be considered more generally as the Cartesian products of complete graphs that may be of varying sizes.[3] Unlike the Hamming graphs H(d,q), the graphs in this more general class are not necessarily distance-regular, but they continue to be regular and vertex-transitive.
Special cases
H(2,3), which is the generalized quadrangleGQ (2,1)[4]
It is possible in linear time to test whether a graph is a Hamming graph, and in the case that it is, find a labeling of it with tuples that realizes it as a Hamming graph.[3]
^Karami, Hamed (2022), "Edge distance-balanced of Hamming graphs", Journal of Discrete Mathematical Sciences and Cryptography, 25: 2667–2672, doi:10.1080/09720529.2021.1914363.
^ abImrich, Wilfried; Klavžar, Sandi (2000), "Hamming graphs", Product graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, pp. 104–106, ISBN978-0-471-37039-0, MR1788124.
^Blokhuis, Aart; Brouwer, Andries E.; Haemers, Willem H. (2007), "On 3-chromatic distance-regular graphs", Designs, Codes and Cryptography, 44 (1–3): 293–305, doi:10.1007/s10623-007-9100-7, MR2336413. See in particular note (e) on p. 300.
^Bailey, Robert F.; Cameron, Peter J. (2011), "Base size, metric dimension and other invariants of groups and graphs", Bulletin of the London Mathematical Society, 43 (2): 209–242, doi:10.1112/blms/bdq096, MR2781204, S2CID6684542.
^Koolen, Jacobus H.; Lee, Woo Sun; Martin, W (2010), "Characterizing completely regular codes from an algebraic viewpoint", Combinatorics and graphs, Contemp. Math., vol. 531, Providence, RI: Amer., pp. 223–242, arXiv:0911.1828, doi:10.1090/conm/531/10470, ISBN9780821848654, MR2757802, S2CID8197351. On p. 224, the authors write that "a careful study of completely regular codes in Hamming graphs is central to the study of association schemes".