In mathematics , the grand Riemann hypothesis is a generalisation of the Riemann hypothesis and generalized Riemann hypothesis . It states that the nontrivial zeros of all automorphic L -functions lie on the critical line
1
2
+
i
t
{\displaystyle {\frac {1}{2}}+it}
with
t
{\displaystyle t}
a real number variable and
i
{\displaystyle i}
the imaginary unit .
The modified grand Riemann hypothesis is the assertion that the nontrivial zeros of all automorphic L -functions lie on the critical line or the real line .
Notes
References
^ Sarnak, Peter (2005). "Notes on the Generalized Ramanujan Conjectures" (PDF) . In Arthur, James ; Ellwood, David; Kottwitz, Robert (eds.). Harmonic Analysis, The Trace Formula, and Shimura Varieties . Vol. 4. Princeton: Clay Mathematics Institute . Clay Mathematics Proceedings. pp. 659–685. ISBN 0-8218-3844-X . ISSN 1534-6455 . OCLC 637721920 . Archived (PDF) from the original on October 4, 2015. Retrieved November 11, 2020 .
^ Conrey, Brian ; Iwaniec, Henryk (2002). "Spacing of zeros of Hecke L-functions and the class number problem" . Acta Arithmetica . 103 (3): 259–312. arXiv :math/0111012 . Bibcode :2002AcAri.103..259C . doi :10.4064/aa103-3-5 . ISSN 0065-1036 . Conrey and Iwaniec show that sufficiently many small gaps between zeros of the Riemann zeta function would imply the non-existence of Landau–Siegel zeros.
Further reading