Galilei-covariant tensor formulation
Tensor formulation of non-relativistic physics
The Galilei-covariant tensor formulation is a method for treating non-relativistic physics using the extended Galilei group as the representation group of the theory. It is constructed in the light cone of a five dimensional manifold.
Takahashi et al., in 1988, began a study of Galilean symmetry , where an explicitly covariant non-relativistic field theory could be developed. The theory is constructed in the light cone of a (4,1) Minkowski space .[ 1] [ 2] [ 3] [ 4] Previously, in 1985, Duval et al. constructed a similar tensor formulation in the context of Newton–Cartan theory .[ 5] Some other authors also have developed a similar Galilean tensor formalism.[ 6] [ 7]
Galilean manifold
The Galilei transformations are
x
′
=
R
x
− − -->
v
t
+
a
t
′
=
t
+
b
.
{\displaystyle {\begin{aligned}\mathbf {x} '&=R\mathbf {x} -\mathbf {v} t+\mathbf {a} \\t'&=t+\mathbf {b} .\end{aligned}}}
where
R
{\displaystyle R}
stands for the three-dimensional Euclidean rotations,
v
{\displaystyle \mathbf {v} }
is the relative velocity determining Galilean boosts, a stands for spatial translations and b , for time translations. Consider a free mass particle
m
{\displaystyle m}
; the mass shell relation is given by
p
2
− − -->
2
m
E
=
0
{\displaystyle p^{2}-2mE=0}
.
We can then define a 5-vector,
p
μ μ -->
=
(
p
x
,
p
y
,
p
z
,
m
,
E
)
=
(
p
i
,
m
,
E
)
{\displaystyle p^{\mu }=(p_{x},p_{y},p_{z},m,E)=(p_{i},m,E)}
,
with
i
=
1
,
2
,
3
{\displaystyle i=1,2,3}
.
Thus, we can define a scalar product of the type
p
μ μ -->
p
ν ν -->
g
μ μ -->
ν ν -->
=
p
i
p
i
− − -->
p
5
p
4
− − -->
p
4
p
5
=
p
2
− − -->
2
m
E
=
k
,
{\displaystyle p_{\mu }p_{\nu }g^{\mu \nu }=p_{i}p_{i}-p_{5}p_{4}-p_{4}p_{5}=p^{2}-2mE=k,}
where
g
μ μ -->
ν ν -->
=
± ± -->
(
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
− − -->
1
0
0
0
− − -->
1
0
)
,
{\displaystyle g^{\mu \nu }=\pm {\begin{pmatrix}1&0&0&0&0\\0&1&0&0&0\\0&0&1&0&0\\0&0&0&0&-1\\0&0&0&-1&0\end{pmatrix}},}
is the metric of the space-time, and
p
ν ν -->
g
μ μ -->
ν ν -->
=
p
μ μ -->
{\displaystyle p_{\nu }g^{\mu \nu }=p^{\mu }}
.[ 3]
Extended Galilei algebra
A five dimensional Poincaré algebra leaves the metric
g
μ μ -->
ν ν -->
{\displaystyle g^{\mu \nu }}
invariant,
[
P
μ μ -->
,
P
ν ν -->
]
=
0
,
1
i
[
M
μ μ -->
ν ν -->
,
P
ρ ρ -->
]
=
g
μ μ -->
ρ ρ -->
P
ν ν -->
− − -->
g
ν ν -->
ρ ρ -->
P
μ μ -->
,
1
i
[
M
μ μ -->
ν ν -->
,
M
ρ ρ -->
σ σ -->
]
=
g
μ μ -->
ρ ρ -->
M
ν ν -->
σ σ -->
− − -->
g
μ μ -->
σ σ -->
M
ν ν -->
ρ ρ -->
− − -->
g
ν ν -->
ρ ρ -->
M
μ μ -->
σ σ -->
+
η η -->
ν ν -->
σ σ -->
M
μ μ -->
ρ ρ -->
,
{\displaystyle {\begin{aligned}[][P_{\mu },P_{\nu }]&=0,\\{\frac {1}{i}}~[M_{\mu \nu },P_{\rho }]&=g_{\mu \rho }P_{\nu }-g_{\nu \rho }P_{\mu },\\{\frac {1}{i}}~[M_{\mu \nu },M_{\rho \sigma }]&=g_{\mu \rho }M_{\nu \sigma }-g_{\mu \sigma }M_{\nu \rho }-g_{\nu \rho }M_{\mu \sigma }+\eta _{\nu \sigma }M_{\mu \rho },\end{aligned}}}
We can write the generators as
J
i
=
1
2
ϵ ϵ -->
i
j
k
M
j
k
,
K
i
=
M
5
i
,
C
i
=
M
4
i
,
D
=
M
54
.
{\displaystyle {\begin{aligned}J_{i}&={\frac {1}{2}}\epsilon _{ijk}M_{jk},\\K_{i}&=M_{5i},\\C_{i}&=M_{4i},\\D&=M_{54}.\end{aligned}}}
The non-vanishing commutation relations will then be rewritten as
[
J
i
,
J
j
]
=
i
ϵ ϵ -->
i
j
k
J
k
,
[
J
i
,
C
j
]
=
i
ϵ ϵ -->
i
j
k
C
k
,
[
D
,
K
i
]
=
i
K
i
,
[
P
4
,
D
]
=
i
P
4
,
[
P
i
,
K
j
]
=
i
δ δ -->
i
j
P
5
,
[
P
4
,
K
i
]
=
i
P
i
,
[
P
5
,
D
]
=
− − -->
i
P
5
,
[
J
i
,
K
j
]
=
i
ϵ ϵ -->
i
j
k
K
k
,
[
K
i
,
C
j
]
=
i
δ δ -->
i
j
D
+
i
ϵ ϵ -->
i
j
k
J
k
,
[
C
i
,
D
]
=
i
C
i
,
[
J
i
,
P
j
]
=
i
ϵ ϵ -->
i
j
k
P
k
,
[
P
i
,
C
j
]
=
i
δ δ -->
i
j
P
4
,
[
P
5
,
C
i
]
=
i
P
i
.
{\displaystyle {\begin{aligned}\left[J_{i},J_{j}\right]&=i\epsilon _{ijk}J_{k},\\\left[J_{i},C_{j}\right]&=i\epsilon _{ijk}C_{k},\\\left[D,K_{i}\right]&=iK_{i},\\\left[P_{4},D\right]&=iP_{4},\\\left[P_{i},K_{j}\right]&=i\delta _{ij}P_{5},\\\left[P_{4},K_{i}\right]&=iP_{i},\\\left[P_{5},D\right]&=-iP_{5},\\[4pt]\left[J_{i},K_{j}\right]&=i\epsilon _{ijk}K_{k},\\\left[K_{i},C_{j}\right]&=i\delta _{ij}D+i\epsilon _{ijk}J_{k},\\\left[C_{i},D\right]&=iC_{i},\\\left[J_{i},P_{j}\right]&=i\epsilon _{ijk}P_{k},\\\left[P_{i},C_{j}\right]&=i\delta _{ij}P_{4},\\\left[P_{5},C_{i}\right]&=iP_{i}.\end{aligned}}}
An important Lie subalgebra is
[
P
4
,
P
i
]
=
0
[
P
i
,
P
j
]
=
0
[
J
i
,
P
4
]
=
0
[
K
i
,
K
j
]
=
0
[
J
i
,
J
j
]
=
i
ϵ ϵ -->
i
j
k
J
k
,
[
J
i
,
P
j
]
=
i
ϵ ϵ -->
i
j
k
P
k
,
[
J
i
,
K
j
]
=
i
ϵ ϵ -->
i
j
k
K
k
,
[
P
4
,
K
i
]
=
i
P
i
,
[
P
i
,
K
j
]
=
i
δ δ -->
i
j
P
5
,
{\displaystyle {\begin{aligned}[][P_{4},P_{i}]&=0\\[][P_{i},P_{j}]&=0\\[][J_{i},P_{4}]&=0\\[][K_{i},K_{j}]&=0\\\left[J_{i},J_{j}\right]&=i\epsilon _{ijk}J_{k},\\\left[J_{i},P_{j}\right]&=i\epsilon _{ijk}P_{k},\\\left[J_{i},K_{j}\right]&=i\epsilon _{ijk}K_{k},\\\left[P_{4},K_{i}\right]&=iP_{i},\\\left[P_{i},K_{j}\right]&=i\delta _{ij}P_{5},\end{aligned}}}
P
4
{\displaystyle P_{4}}
is the generator of time translations (Hamiltonian ), Pi is the generator of spatial translations (momentum operator ),
K
i
{\displaystyle K_{i}}
is the generator of Galilean boosts, and
J
i
{\displaystyle J_{i}}
stands for a generator of rotations (angular momentum operator ). The generator
P
5
{\displaystyle P_{5}}
is a Casimir invariant and
P
2
− − -->
2
P
4
P
5
{\displaystyle P^{2}-2P_{4}P_{5}}
is an additional Casimir invariant . This algebra is isomorphic to the extended Galilean Algebra in (3+1) dimensions with
P
5
=
− − -->
M
{\displaystyle P_{5}=-M}
, The central charge , interpreted as mass, and
P
4
=
− − -->
H
{\displaystyle P_{4}=-H}
.[citation needed ]
The third Casimir invariant is given by
W
μ μ -->
5
W
μ μ -->
5
{\displaystyle W_{\mu \,5}W^{\mu }{}_{5}}
, where
W
μ μ -->
ν ν -->
=
ϵ ϵ -->
μ μ -->
α α -->
β β -->
ρ ρ -->
ν ν -->
P
α α -->
M
β β -->
ρ ρ -->
{\displaystyle W_{\mu \nu }=\epsilon _{\mu \alpha \beta \rho \nu }P^{\alpha }M^{\beta \rho }}
is a 5-dimensional analog of the Pauli–Lubanski pseudovector .[ 4]
Bargmann structures
In 1985 Duval, Burdet and Kunzle showed that four-dimensional Newton–Cartan theory of gravitation can be reformulated as Kaluza–Klein reduction of five-dimensional Einstein gravity along a null-like direction. The metric used is the same as the Galilean metric but with all positive entries
g
μ μ -->
ν ν -->
=
(
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
1
0
)
.
{\displaystyle g^{\mu \nu }={\begin{pmatrix}1&0&0&0&0\\0&1&0&0&0\\0&0&1&0&0\\0&0&0&0&1\\0&0&0&1&0\end{pmatrix}}.}
This lifting is considered to be useful for non-relativistic holographic models.[ 8] Gravitational models in this framework have been shown to precisely calculate the Mercury precession.[ 9]
See also
References
^ Takahashi, Yasushi (1988). "Towards the Many-Body Theory with the Galilei Invariance as a Guide: Part I". Fortschritte der Physik/Progress of Physics . 36 (1): 63–81. Bibcode :1988ForPh..36...63T . doi :10.1002/prop.2190360105 . eISSN 1521-3978 .
^ Takahashi, Yasushi (1988). "Towards the Many-Body Theory with the Galilei invariance as a Gluide Part II". Fortschritte der Physik/Progress of Physics . 36 (1): 83–96. Bibcode :1988ForPh..36...83T . doi :10.1002/prop.2190360106 . eISSN 1521-3978 .
^ a b Omote, M.; Kamefuchi, S.; Takahashi, Y.; Ohnuki, Y. (1989). "Galilean Covariance and the Schrödinger Equation". Fortschritte der Physik/Progress of Physics (in German). 37 (12): 933–950. Bibcode :1989ForPh..37..933O . doi :10.1002/prop.2190371203 . eISSN 1521-3978 .
^ a b Santana, A. E.; Khanna, F. C.; Takahashi, Y. (1998-03-01). "Galilei Covariance and (4,1)-de Sitter Space" . Progress of Theoretical Physics . 99 (3): 327–336. arXiv :hep-th/9812223 . Bibcode :1998PThPh..99..327S . doi :10.1143/PTP.99.327 . ISSN 0033-068X . S2CID 17091575 .
^ Duval, C.; Burdet, G.; Künzle, H. P.; Perrin, M. (1985). "Bargmann structures and Newton–Cartan theory". Physical Review D . 31 (8): 1841–1853. Bibcode :1985PhRvD..31.1841D . doi :10.1103/PhysRevD.31.1841 . PMID 9955910 .
^ Pinski, G. (1968-11-01). "Galilean Tensor Calculus". Journal of Mathematical Physics . 9 (11): 1927–1930. Bibcode :1968JMP.....9.1927P . doi :10.1063/1.1664527 . ISSN 0022-2488 .
^ Kapuścik, Edward. (1985). On the relation between Galilean, Poincaré and Euclidean field equations . IFJ. OCLC 835885918 .
^ Goldberger, Walter D. (2009). "AdS/CFT duality for non-relativistic field theory". Journal of High Energy Physics . 2009 (3): 069. arXiv :0806.2867 . Bibcode :2009JHEP...03..069G . doi :10.1088/1126-6708/2009/03/069 . S2CID 118553009 .
^ Ulhoa, Sérgio C.; Khanna, Faqir C.; Santana, Ademir E. (2009-11-20). "Galilean covariance and the gravitational field". International Journal of Modern Physics A . 24 (28n29): 5287–5297. arXiv :0902.2023 . Bibcode :2009IJMPA..24.5287U . doi :10.1142/S0217751X09046333 . ISSN 0217-751X . S2CID 119195397 .