GNRS conjecture

Unsolved problem in mathematics:
Do minor-closed graph families have embeddings with bounded distortion?

In theoretical computer science and metric geometry, the GNRS conjecture connects the theory of graph minors, the stretch factor of embeddings, and the approximation ratio of multi-commodity flow problems. It is named after Anupam Gupta, Ilan Newman, Yuri Rabinovich, and Alistair Sinclair, who formulated it in 2004.[1]

Formulation

One formulation of the conjecture involves embeddings of the shortest path distances of weighted undirected graphs into spaces, real vector spaces in which the distance between two vectors is the sum of their coordinate differences. If an embedding maps all pairs of vertices with distance to pairs of vectors with distance in the range then its stretch factor or distortion is the ratio ; an isometry has stretch factor one, and all other embeddings have greater stretch factor.[1]

The graphs that have an embedding with at most a given distortion are closed under graph minor operations, operations that delete vertices or edges from a graph or contract some of its edges. The GNRS conjecture states that, conversely, every minor-closed family of graphs, other than the family of all graphs, can be embedded into an space with bounded distortion. That is, the distortion of graphs in the family is bounded by a constant that depends on the family but not on the individual graphs. For instance, the planar graphs are closed under minors. Therefore, it would follow from the GNRS conjecture that the planar graphs have bounded distortion.[1]

An alternative formulation involves analogues of the max-flow min-cut theorem for undirected multi-commodity flow problems. The ratio of the maximum flow to the minimum cut, in such problems, is known as the flow-cut gap. The largest flow-cut gap that a flow problem can have on a given graph equals the distortion of the optimal embedding of the graph.[2][3] Therefore, the GNRS conjecture can be rephrased as stating that the minor-closed families of graphs have bounded flow-cut gap.[1]

Arbitrary -vertex graphs (indeed, arbitrary -point metric spaces) have embeddings with distortion .[4] Some graphs have logarithmic flow-cut gap, and in particular this is true for a multicommodity flow with every pair of vertices having equal demand on a bounded-degree expander graph.[5] Therefore, this logarithmic bound on the distortion of arbitrary graphs is tight. Planar graphs can be embedded with smaller distortion, .[6]

Although the GNRS conjecture remains unsolved, it has been proven for some minor-closed graph families that bounded-distortion embeddings exist. These include the series–parallel graphs and the graphs of bounded circuit rank,[1] the graphs of bounded pathwidth,[7] the 2-clique-sums of graphs of bounded size,[8] and the -outerplanar graphs.[9]

In contrast to the behavior of metric embeddings into spaces, every finite metric space has embeddings into with stretch arbitrarily close to one by the Johnson–Lindenstrauss lemma, and into spaces with stretch exactly one by the tight span construction.

See also

  • Partial cube, a class of graphs with distortion-free unweighted -embeddings

References

  1. ^ a b c d e Gupta, Anupam; Newman, Ilan; Rabinovich, Yuri; Sinclair, Alistair (2004), "Cuts, trees and -embeddings of graphs", Combinatorica, 24 (2): 233–269, doi:10.1007/s00493-004-0015-x, MR 2071334
  2. ^ Avis, David; Deza, Michel (1991), "The cut cone, embeddability, complexity, and multicommodity flows", Networks, 21 (6): 595–617, doi:10.1002/net.3230210602, MR 1128272
  3. ^ Linial, Nathan; London, Eran; Rabinovich, Yuri (1995), "The geometry of graphs and some of its algorithmic applications", Combinatorica, 15 (2): 215–245, doi:10.1007/BF01200757, MR 1337355
  4. ^ Bourgain, J. (1985), "On Lipschitz embedding of finite metric spaces in Hilbert space", Israel Journal of Mathematics, 52 (1–2): 46–52, doi:10.1007/BF02776078, MR 0815600
  5. ^ Leighton, Tom; Rao, Satish (1999), "Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms", Journal of the ACM, 46 (6): 787–832, doi:10.1145/331524.331526, MR 1753034
  6. ^ Rao, Satish (1999), "Small distortion and volume preserving embeddings for planar and Euclidean metrics", Proceedings of the Fifteenth Annual Symposium on Computational Geometry (SoCG '99), New York: ACM, pp. 300–306, doi:10.1145/304893.304983, ISBN 1-58113-068-6, MR 1802217
  7. ^ Lee, James R.; Sidiropoulos, Anastasios (2013), "Pathwidth, trees, and random embeddings", Combinatorica, 33 (3): 349–374, arXiv:0910.1409, doi:10.1007/s00493-013-2685-8, MR 3144806
  8. ^ Lee, James R.; Poore, Daniel E. (2013), "On the 2-sum embedding conjecture", Proceedings of the Twenty-Ninth Annual Symposium on Computational Geometry (SoCG '13), New York: ACM, pp. 197–206, doi:10.1145/2462356.2492436, ISBN 978-1-4503-2031-3, MR 3208212
  9. ^ Chekuri, Chandra; Gupta, Anupam; Newman, Ilan; Rabinovich, Yuri; Sinclair, Alistair (2006), "Embedding -outerplanar graphs into ", SIAM Journal on Discrete Mathematics, 20 (1): 119–136, doi:10.1137/S0895480102417379, MR 2257250

Read other articles:

Artikel ini tidak memiliki isi yang cukup untuk menjelaskan subjek yang sedang dibahas. Suntinglah artikel ini dan menyertakan kalimat pembuka yang sesuai. Logo untuk Celebrity FitnessCelebrity Fitness adalah penyedia tempat kebugaran yang dibangun pada tahun 2003 dan resmi membuka klub di EX Plaza pada tahun 2005.[1] Jumlah klub yang tersedia mencapai 36 dengan jumlah member mencapai 100.000 orang.[1] Celebrity Fitness memiliki misi untuk menjadikan aktivitas olahraga sebagai...

 

Cyriac Joseph Hakim Mahkamah Agung IndiaMasa jabatan07-07-2008–27-01-2012 Informasi pribadiKebangsaanIndiaProfesiHakimSunting kotak info • L • B Cyriac Joseph adalah hakim Mahkamah Agung India. Ia mulai menjabat sebagai hakim di mahkamah tersebut pada 07-07-2008. Masa baktinya sebagai hakim berakhir pada 27-01-2012.[1] Referensi ^ Daftar Hakim di Mahkamah Agung India. Mahkamah Agung India. Diakses tanggal 10 Juni 2021.  Artikel bertopik biografi India ini adalah s...

 

BurntTeaser posterSutradaraJohn WellsProduser Stacey Sher Erwin Stoff John Wells SkenarioSteven KnightCeritaMichael KalesnikoPemeran Bradley Cooper Sienna Miller Omar Sy Daniel Brühl Matthew Rhys Alicia Vikander Uma Thurman Emma Thompson Penata musikRob SimonsenSinematograferAdriano GoldmanPenyuntingNick MoorePerusahaanproduksi Shiny Penny Productions 3 Arts Entertainment Battle Mountain Films DistributorThe Weinstein CompanyTanggal rilis 22 Oktober 2015 (2015-10-22) (New Yor...

داود باشا معلومات شخصية تاريخ الوفاة سبتمبر 1549  مواطنة الدولة العثمانية  تعديل مصدري - تعديل     لمعانٍ أخرى، طالع داود باشا (توضيح). داود باشا ( تُوفي في سبتمبر 1549م ) سياسي عثماني كان حاكم إيالة مصر من أبريل 1538م حتى وفاته .[1][2] كان صديقاً لسلفه سليمان باشا ...

 

Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Konsulat Jendral Republik Indonesia di Houston Seorang konsul atau konsul jenderal adalah pemimpin sebuah konsulat (bahasa Inggris:Consulate) wakil resmi sebuah negara bertindak untuk membantu dan melindungi warga negaranya serta memfasilitasi hubungan perdagangan dan persahabatan (hal ini yang membedakan tugas antara ...

 

Son of Charles Darwin (1850–1943) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Leonard Darwin – news · newspapers · books · scholar · JSTOR (July 2019) (Learn how and when to remove this template message) Leonard Darwin in April 1916 Leonard Darwin FRGS (15 January 1850 – 26 March 1943) was an English...

العلاقات التشادية الليسوتوية تشاد ليسوتو   تشاد   ليسوتو تعديل مصدري - تعديل   العلاقات التشادية الليسوتوية هي العلاقات الثنائية التي تجمع بين تشاد وليسوتو.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة تشاد ل...

 

ملخص معلومات الملف الوصف بناية سفارة جمهورية العراق بمملكة البحرين المصدر عمل شخصي التاريخ المنتج هذا الملف لا يمتلك معلومات معلومات المنتج، وربما تنقصه بعض المعلومات الأخرى. يجب أن تحتوي الملفات على معلومات موجزة حول الملف لإعلام الآخرين بالمحتوى والمؤلف والمصدر والتا�...

 

Field of research in the convergence of biology and electronics For article related to implanted bio-electronic devices and bioelectronic medicine, see Implant (medicine). Bioelectronics is a field of research in the convergence of biology and electronics. Definitions A ribosome is a biological machine that utilizes protein dynamics At the first C.E.C. Workshop, in Brussels in November 1991, bioelectronics was defined as 'the use of biological materials and biological architectures for inform...

Coat of arms of Equatorial Guinea This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Coat of arms of Equatorial Guinea – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) Coat of arms of Equatorial GuineaArmigerRepublic of Equatorial GuineaAdopted21...

 

Liga Utama EsiaMusim2008–09JuaraPersisam Putra SamarindaPromosiPersisam Putra Samarinda Persema Malang PSPS Pekanbaru via Play-off Persebaya SurabayaDegradasiPersibat BatangPSP PadangPersekabpas PasuruanPencetak golterbanyak(17 gol)Jean Paul BoumsongHerman DzumafoMardiansyah← 2007 2009–10 → Divisi Utama Liga Indonesia 2008–2009 adalah musim keempat belas Liga Indonesia. Mulai musim ini, Divisi Utama bukan lagi merupakan kompetisi tingkat tertinggi dalam Liga Indonesia karena dibentu...

 

Pour les articles homonymes, voir Fox Kids (homonymie). Fox KidsCaractéristiquesCréation 8 septembre 1990 19 octobre 1996Disparition 7 septembre 2002 1er janvier 2005Propriétaire Fox Entertainment GroupSlogan It's On Fox (1992–1993)Fox Kids Is What? Fox Kids Is Cool! (1995–1997)Fox Kids! Rocks Kids! (1997–1998)Fox Kids Take the Ride! (1998–2001)Fox Kids, Where Heroes Live! (2001–2002)Langue AnglaisPays États-UnisStatut DéfunteSiège social États-UnisAncien nom Fox Children's ...

Subgroup of the Yoruba ethnic group Part of a series onYorùbá people Art Architecture Culture Language Music Mythology Subgroups Ana (Ifɛ̀) Kétu Ànàgó-Kúrá Ṣábẹ̀ẹ́ Àkókó Àwórì Ẹ̀gbá Èkìtì Ìbàràpá Ìbọ̀lọ́ Ìdàáṣà (Ìdàáshà) Ìgbómìnà Ifẹ̀ Ìjẹ̀bú Ìjẹ̀ṣà Ìkálẹ̀ Ìlàjẹ Ìshà (Ìṣà) Mọkọ́lé Ọ̀họ̀rí (Ìjẹ) Okun Òǹkò (Òkè-Ògùn) Ọ̀ghọ̀ Ọ̀wọ́rọ̀ Òwu Ọ̀yọ́ Rẹ́mọ Ùdoko (Oǹd...

 

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

 

هنودمعلومات عامةنسبة التسمية الهند التعداد الكليالتعداد قرابة 1.21 مليار[1][2]تعداد الهند عام 2011ق. 1.32 مليار[3]تقديرات عام 2017ق. 30.8 مليون[4]مناطق الوجود المميزةبلد الأصل الهند البلد الهند  الهند نيبال 4,000,000[5] الولايات المتحدة 3,982,398[6] الإمار...

  لمعانٍ أخرى، طالع القرم (توضيح). القرمCrimée (بالفرنسية) معلومات عامةالتقسيم الإداري الدائرة التاسعة عشرة في باريس[1] البلد  فرنسا[1] شبكة المواصلات مترو باريس المالك الهيئة المستقلة للنقل في باريس الإدارة الهيئة المستقلة للنقل في باريس الخطوط الخط 7 لمترو با�...

 

Grand Prix Belgia 2018 Lomba ke-13 dari 21 dalam Formula Satu musim 2018← Lomba sebelumnyaLomba berikutnya → Tata letak sirkuit Spa-Francorchamps.Detail perlombaan[1]Tanggal 26 Agustus 2018Nama resmi Formula 1 2018 Johnnie Walker Belgian Grand PrixLokasi Sirkuit Spa-FrancorchampsStavelot, BelgiaSirkuit Fasilitas balapan permanenPanjang sirkuit 7.004 km (4.352 mi)Jarak tempuh 44 putaran, 308.052 km (191.415 mi)Cuaca BerawanPosisi polePembalap Lewis Hamilton Merc...

 

Carte montrant les territoires de l'Ukraine (vert), de la Russie (rose) et de la Crimée (noir). Le blocus économique de la Crimée par l'Ukraine est un blocus mené par des activistes d'organisations publiques d'Ukraine à l'encontre de la Crimée, annexée à la Russie à la suite de la crise de Crimée[1] de 2014. Il a été mis en place le 20 septembre 2015 à l'initiative de la présidence du Majlis des Tatars de Crimée comme un « blocus civil de la Crimée » visant à arr�...

Election held in Afghanistan 2019 Afghan presidential election ← 2014 28 September 2019   Nominee Ashraf Ghani Abdullah Abdullah Party Independent National Coalition Running mate Amrullah SalehSarwar Danish[1][2] Enayatullah Babur FarahmandAsadullah Sadati[1][2] Popular vote 923,592 720,841 Percentage 50.64% 39.52% Results by province Ghani   40–50%  50–60%  60–70%  70–80%  80�...

 

Capital of Malawi's Northern Region Place in Northern Region, MalawiMzuzuMzuzuLocation in MalawiCoordinates: 11°27′29″S 34°00′54″E / 11.45807°S 34.015131°E / -11.45807; 34.015131Country MalawiRegionNorthern RegionPopulation (2018 Census[1]) • Total221,272Time zone+2ClimateCwb Mzuzu is the capital of Malawi's Northern Region and is the third largest city by population in Malawi. The city has 221,272 residents and 20,000 commuter...