Fool's mate

Fool's mate
abcdefgh
8
a8 black rook
b8 black knight
c8 black bishop
e8 black king
f8 black bishop
g8 black knight
h8 black rook
a7 black pawn
b7 black pawn
c7 black pawn
d7 black pawn
f7 black pawn
g7 black pawn
h7 black pawn
e6 black pawn
g4 white pawn
h4 black queen
f3 white pawn
a2 white pawn
b2 white pawn
c2 white pawn
d2 white pawn
e2 white pawn
h2 white pawn
a1 white rook
b1 white knight
c1 white bishop
d1 white queen
e1 white king
f1 white bishop
g1 white knight
h1 white rook
8
77
66
55
44
33
22
11
abcdefgh
Fool's mate: White is checkmated.
Moves
  • 1.f3 e6 2.g4 Qh4#
  • 1.f3 e5 2.g4 Qh4#
  • 1.f4 e6 2.g4 Qh4#
  • 1.f4 e5 2.g4 Qh4#
  • 1.g4 e6 2.f3 Qh4#
  • 1.g4 e6 2.f4 Qh4#
  • 1.g4 e5 2.f3 Qh4#
  • 1.g4 e5 2.f4 Qh4#
OriginGioachino Greco (c. 1620), via Francis Beale (1656)
ParentBarnes Opening, Bird Opening, or Grob's Attack

In chess, fool's mate is the checkmate delivered after the fewest possible moves from the game's starting position.[1] It arises from the following moves, or similar:

1. f3 e6
2. g4?? Qh4#

The mate can be achieved in two moves only by Black, giving checkmate on the second move with the queen. Fool's mate received its name because it can occur only if White commits an extraordinary blunder. Black can be mated in an analogous way, although this requires an additional move, with White's queen delivering checkmate on the third move. Even among rank beginners, this checkmate rarely occurs in practice.

The mate is an illustration of the kingside weakness shared by both players along the f- and g-files during the opening phase of the game. A player may also suffer an early checkmate if the f- and g-pawns are advanced prematurely and the kingside is not properly defended, as shown in historical miniature games recorded in chess literature.

History

Fool's mate was named and described in The Royal Game of Chess-Play, a 1656 text by Francis Beale that adapted the work of the early chess writer Gioachino Greco.[2]

Prior to the mid-19th century, there was not a prevailing convention as to whether White or Black moved first; according to Beale, the matter was to be decided in some prior contest or decision of the players' choice.[3] In Beale's example, Black was the player to move first, with each player making two moves to various squares or "houses", after which White achieved checkmate.

The Fooles Mate

Black Kings Biſhops pawne one houſe.
White Kings pawne one houſe.
Black kings knights pawne two houſes

White Queen gives Mate at the contrary kings Rookes fourth houſe

— Beale, The Royall Game of Chesse-Play[4]

Beale's example can be paraphrased in modern terms where White always moves first, algebraic notation is used, and Black delivers the fastest possible mate after each player makes two moves: 1.f3 e6 2.g4 Qh4#

Move sequence possibilities

There are eight distinct ways in which fool's mate can be reached.[1] White may alternate the order of f- and g-pawn moves, Black may move their e-pawn to e6 or e5, and White may move their f-pawn to f3 or f4.

Variations

Mating patterns similar to fool's mate can occur early in the game. Such patterns in historical games illustrate the weakness along the e1–h4 and e8–h5 diagonals early in the game. White can mate Black using a pattern that resembles fool's mate, though it takes at least an extra turn.

White to mate in three moves

abcdefgh
8
a8 black rook
b8 black knight
c8 black bishop
d8 black queen
e8 black king
f8 black bishop
g8 black knight
h8 black rook
a7 black pawn
b7 black pawn
c7 black pawn
d7 black pawn
e7 black pawn
h7 black pawn
f6 black pawn
g5 black pawn
d4 white pawn
e4 white pawn
a2 white pawn
b2 white pawn
c2 white pawn
f2 white pawn
g2 white pawn
h2 white pawn
a1 white rook
b1 white knight
c1 white bishop
d1 white queen
e1 white king
f1 white bishop
g1 white knight
h1 white rook
8
77
66
55
44
33
22
11
abcdefgh
A problem with White to mate instead, given by Fischer and Polgár.

White can achieve a checkmate similar to fool's mate. When the roles are reversed, however, White requires an extra third turn or half-move, known in computer chess as a ply. In both cases, the principle is the same: a player advances their f- and g-pawns such that the opponent's queen can mate along the unblocked diagonal. A board position illustrating White's version of fool's mate—with White to mate—was given as a problem in Bobby Fischer Teaches Chess, and also as an early example in a compendium of problems by László Polgár.[5] The solution in Fischer's book bore the comment "Black foolishly weakened his King's defenses. This game took three moves!!"[6] One possible sequence leading to the position is 1. e4 g5 2. d4 f6?? 3. Qh5#.

A possibly apocryphal variant of the fool's mate has been reported by several sources. The 1959 game 1. e4 g5 2. Nc3 f5?? 3. Qh5# has been attributed to Masefield and Trinka, although the first player's name has also been reported as Mayfield or Mansfield and the second player's name as Trinks or Trent.[7][8][9][10][11] Further, a similar mate can occur in From's Gambit: 1. f4 e5 2. g3? exf4 3. gxf4?? Qh4#.

There are other possible three-move mates for White, such as 1. e4 e5 2. Qh5 Ke7?? 3. Qxe5#. The total number is 347.[12]

Black to mate in three moves

If the typical fool's mate setup is played, except White plays h3 instead of g4, a similar forced mate can result: 2... Qh4+ 3. g3 Qxg3#. Like fool's mate, there are eight distinct ways for this to happen.

Teed vs. Delmar

Teed vs. Delmar, 1896
abcdefgh
8
a8 black rook
b8 black knight
c8 black bishop
d8 black queen
e8 black king
f8 black bishop
g8 black knight
a7 black pawn
b7 black pawn
c7 black pawn
d7 black pawn
e7 black pawn
h6 black rook
g5 black pawn
h5 black pawn
d4 white pawn
f4 black pawn
d3 white bishop
e3 white pawn
g3 white bishop
a2 white pawn
b2 white pawn
c2 white pawn
f2 white pawn
g2 white pawn
h2 white pawn
a1 white rook
b1 white knight
d1 white queen
e1 white king
g1 white knight
h1 white rook
8
77
66
55
44
33
22
11
abcdefgh
After 6...Rh6?? White mates in two moves.

A well-known trap in the Dutch Defence occurred in the game Frank Melville Teed–Eugene Delmar, 1896:[13][14]

1. d4 f5 2. Bg5 h6 3. Bh4 g5 4. Bg3 f4

It seems that Black has won the bishop, but now comes ...

5. e3

Threatening Qh5#.

5... h5 6. Bd3?!

Probably better is 6.Be2, but the move played sets a trap.

6... Rh6??

Defending against Bg6#, but ...

7. Qxh5+!

White sacrifices his queen to draw the black rook away from its control of g6.

7... Rxh5 8. Bg6#

Greco vs. NN

Greco vs. NN
abcdefgh
8
a8 black rook
b8 black knight
d8 black queen
e8 black king
f8 black bishop
h8 black rook
a7 black pawn
c7 black pawn
d7 black pawn
e7 black pawn
h7 white pawn
b6 black pawn
g6 white bishop
h5 black knight
d4 white pawn
a2 white pawn
b2 white pawn
c2 white pawn
f2 white pawn
g2 black bishop
h2 white pawn
a1 white rook
b1 white knight
c1 white bishop
e1 white king
g1 white knight
h1 white rook
8
77
66
55
44
33
22
11
abcdefgh
Final position after 8.Bg6#

A similar trap occurred in a game published by Gioachino Greco in 1625:

1. e4 b6
2. d4 Bb7
3. Bd3 f5?
4. exf5 Bxg2?
5. Qh5+ g6
6. fxg6 Nf6??

Opening up a flight square for the king at f8 with 6...Bg7 would have prolonged the game. White still wins with 7.Qf5! Nf6 8.Bh6 Bxh6 9.gxh7 Bxh1 (9...e6 opens another flight square at e7; then White checks with 10.Qg6+ Ke7) 10.Qg6+ Kf8 11.Qxh6+ Kf7 12.Nh3, but much slower than in the game.[15]

7. gxh7+! Nxh5
8. Bg6#

See also

References

  1. ^ a b Hooper, David; Whyld, Kenneth (1992). The Oxford Companion to Chess (2nd ed.). Oxford University Press. p. 143. ISBN 9780198661641.
  2. ^ Beale, Francis (29 August 2021). The Royall Game of Chesse-Play. p. 17, .pdf p. 49.
  3. ^ Beale 1656, p. 10 (.pdf p. 42).
  4. ^ Beale 1656, p. 17 (.pdf p. 49).
  5. ^ Polgár, László (1994). Chess: 5334 Problems, Combinations, and Games. Tess Press. p. 57. ISBN 9781579121303. Problem No. 14.
  6. ^ Fischer, Bobby; Margulies, Stuart; Mosenfelder, Donn (1972). Bobby Fischer Teaches Chess. Bantam. pp. 95–96. ISBN 9780553263152. Problem No. 73.
  7. ^ Mike Fox and Richard James (1993). The Even More Complete Chess Addict. Faber and Faber. p. 177.
  8. ^ Winter, Edward (2005). Chess Facts and Fables. McFarland & Co. pp. 253–254. ISBN 978-0-7864-2310-1.
  9. ^ Edward G. Winter (August 2006). "Chess Notes 4493. Short game".
  10. ^ Edward G. Winter (August 2006). "Chess Notes 4506. Short game (C.N. 4493)".
  11. ^ Averbakh, Yuri Lvovich; Beilin, Mikhail Abramovich (1972). Путешествие в шахматное королевство (in Russian). Fizkultura i sport. p. 227.
  12. ^ "A079485 - OEIS". The On-Line Encyclopedia of Integer Sequences. Retrieved 23 August 2023.
  13. ^ "Teed vs. Delmar". Chessgames.com. Retrieved December 16, 2020.
  14. ^ Edward G. Winter (September 3, 2006). "Chess Notes 4561. 1 d4 f5 2 Bg5".
  15. ^ Lev Alburt (2011). Chess Openings for White, Explained. Chess Information Research Center. p. 509.

Read other articles:

Francisco Arce Informasi pribadiNama lengkap Francisco ArceTanggal lahir 4 Februari 1971 (umur 53)Tempat lahir Paraguari, ParaguayPosisi bermain BekKarier senior*Tahun Tim Tampil (Gol)1991-1994 Cerro Porteño 1995-1997 Grêmio 1998-2002 Palmeiras 2003 Gamba Osaka 2004 Libertad Tim nasional1995-2004 Paraguay 61 (5) * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Francisco Arce (lahir 4 Februari 1971) adalah pemain sepak bola asal Paraguay. Statistik Paraguay Tahun T...

 

 

Gadis Tuna Netra karya John Everett Millais, yang menggambarkan para musisi yang mengembara Karikatur dari seorang tramp Pengembara adalah seseorang yang mengembara dari tempat ke tempat tanpa sebuah rumah atau keperjaan atau pemasukan berkala, biasanya dalam keadaan miskin. Pengembara bisa juga dideskripsikan sebagai seseorang tanpa tempat tinggal tetap atau pekerjaan reguler yang mengembara dari tempat ke tempat dan hidup dengan cara mengemis.[1] Referensi ^ Definitions from Oxford ...

 

 

Capteurs électroniques à base de semi-conducteurs. Un semi-conducteur est un matériau qui a les caractéristiques électriques d'un isolant, mais pour lequel la probabilité qu'un électron puisse contribuer à un courant électrique, quoique faible, est suffisamment importante. En d'autres termes, la conductivité électrique d'un semi-conducteur est intermédiaire entre celle des métaux et celle des isolants. Description Le comportement électrique des semi-conducteurs est généralemen...

Field hockey at the 2006 Asian GamesVenueAl-Rayyan Hockey FieldDates2 December 2006 (2006-12-02) – 14 December 2006 (2006-12-14)Competitors271 from 10 nationsMedalists   South Korea (men) China (women)  China (men) Japan (women)  Pakistan (men) India (women)← 20022010 → The field hockey tournament at the 2006 Asian Games was held from 2 to 14 December 2006 in Al-Rayyan Hocke...

 

 

2000 young adult novel by Carol Plum-Ucci This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article describes a work or element of fiction in a primarily in-universe style. Please help rewrite it to explain the fiction more clearly and provide non-fictional perspective. (April 2010) (Learn how and when to remove this template message) This article needs additional citations for verific...

 

 

Jean Michel Jarre Jean-Michel André Jarre (lahir 24 Agustus 1948) merupakan seorang penyanyi dan komponis berkebangsaan Prancis. Dia dikenal dengan nama Jean-Michel Jarre. Dilahirkan di Lyon. Dia berkarier di dunia musik sejak tahun 1971. Diskografi Deserted Palace (1972) Oxygène (1976) Equinoxe (1978) Magnetic Fields (Les Chants Magnétiques) (1981) The Concerts in China (Les Concerts en Chine) (1982) Music for Supermarkets (Musique pour Supermarché) (1983) Zoolook (1984) Rendez-Vous (198...

Stranger ThingsMusim 4Poster promosiDibintangi Winona Ryder David Harbour Millie Bobby Brown Finn Wolfhard Gaten Matarazzo Caleb McLaughlin Noah Schnapp Sadie Sink Natalia Dyer Charlie Heaton Joe Keery Maya Hawke Brett Gelman Priah Ferguson Matthew Modine Paul Reiser Negara asalAmerika SerikatJml. episode9RilisJaringan asliNetflixTanggal disiarkan27 Mei (2022-05-27) –1 Juli 2022 (2022-7-1)Kronologi Musim← SebelumnyaMusim 3 Stranger Things (musim 4) merupakan serial tel...

 

 

Guardians of the Buddha This article is about Buddhist manifestations. For the video game, see Nioh. For the car company, see Nio Inc. For other uses, see NIO. Not to be confused with Neo. A famous Japanese wooden Kongorikishi (Agyō) statue at Tōdai-ji, Nara (World Heritage Site). Made by Unkei and Kaikei in 1203. National Treasure of Japan.Statue of a Jīngāng Lìshì, one out of several thousand stone statues, located at the Maijishan Grottoes, Gansu, China. (World Heritage Site). Carved...

 

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

Australian meat pie and soup dish Pie floaterTypeStreet foodPlace of originSouth AustraliaMain ingredientsAustralian meat pie, pea soup The pie floater is an Australian dish sold in Adelaide. It consists of a meat pie in a thick pea soup, typically with the addition of tomato sauce. Believed to have been first created in the 1890s, the pie floater gained popularity as a meal sold by South Australian pie carts. In 2003, it was recognised as a South Australian Heritage Icon. Development Pea sou...

 

 

Call of Duty Championship 20142014Tournament informationSportCall of Duty: GhostsLocationLos Angeles, California, United StatesAdministratorActivisionTournamentformat(s)Pool Play to seed brackets then Double-Elimination.Teams32Purse1,000,000← 2013 Call of Duty Championship2015 Call of Duty Championship → The Call of Duty Championship 2014 was a Call of Duty: Ghosts tournament that occurred on March 28–30, 2014.[1] It was the second annual iteration of the event...

 

 

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (November 2019) (Learn how and when to remove this message) Cinema of Germany Lists of German films 1895–1918 German Empire 1919–1932 Weimar Germany 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933–1945 Nazi Germany 1933 1934 1935 1936 19371938 1939 1940 1941 1942 1943 1944 1945 1...

Paramount Home Media DistributionParamount Home Media DistributionJenisSubsidiariIndustriVideo rumahDidirikan1975KantorpusatHollywood, California, Amerika SerikatWilayah operasiSeluruh duniaPemilikGulf+Western (1975–1989) Paramount Communications (1989-1994) Viacom (1994–sekarang)IndukParamount PicturesSitus webparamount.com Paramount Home Media Distribution (PHMD, awalnya Paramount Home Entertainment, Paramount Home Video dan Paramount Video) adalah divisi distribusi video rumah dari Par...

 

 

Overview of the electricity sector in the Philippines This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Electricity sector in the Philippines – news · newspapers · books · scholar · JSTOR (May 2016) (Learn how and when to remove this message) The coal-fired Quezon Power Plant in Barangay Cagsiay I in Mauban, Q...

 

 

American professional baseball team O's and The O's redirect here. For the Latin character, see O. For other uses, see OS and O (disambiguation). This article is about the current baseball team. For the bird species, see Baltimore oriole. For other uses, see Baltimore Orioles (disambiguation). Baltimore Orioles 2024 Baltimore Orioles seasonEstablished in 1894Based in Baltimore since 1954 Team logoCap insignia Major league affiliations American League (1901–present) East Division (1969–pre...

Amusement park in Denmark This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (June 2014) (Learn how and when to remove this message) Bonbon-landLocationHolme-Olstrup, DenmarkCoordinates55°15′38″N 11°51′50″E / 55.26056°N 11.86389°E / 55.26056; 11.86389Opened1991OwnerParques Reunido...

 

 

Australian crickteter John FerrisFerris in about 1895Personal informationFull nameJohn James FerrisBorn(1867-06-21)21 June 1867Sydney, AustraliaDied17 November 1900(1900-11-17) (aged 33)Durban, Colony of NatalBattingLeft-handedBowlingLeft-arm medium-fastInternational information National sidesAustralia (1887–1890)England (1892)Test debut (cap 44/75)28 January 1887 Australia v EnglandLast Test22 March 1892 England v South Africa Career statist...

 

 

Sports venue in Johannesburg, South Africa Bidvest StadiumFormer namesMilpark StadiumLocationYale Road Braampark, Johannesburg, Gauteng, South AfricaCoordinates26°11′16″S 28°1′42″E / 26.18778°S 28.02833°E / -26.18778; 28.02833OwnerWits UniversityCapacity5,000Field size105 m × 68 m (115 yd × 74 yd)SurfaceGrassTenantsBidvest Wits Bidvest Stadium, is a multipurpose sports stadium in the Braampark, suburb of Johannesburg, South Africa. The stadium has a dedic...

19th-century cattle ranching company in the Oregon Country Willamette Cattle CompanyDate1837LocationWillamette ValleyNorth AmericaAlso known asWallamet or Willamet Cattle CompanyParticipantsEwing Young and others The Willamette Cattle Company was formed in 1837 by pioneers in the Willamette Valley of present-day Oregon, United States. The company was formed with the express purpose of purchasing cattle in Mexican California. Nearly 750 head of cattle and 40 horses were purchased in total. Ewi...

 

 

Pertanian Umum Agribisnis Agroindustri Agronomi Ilmu pertanian Jelajah bebas Kebijakan pertanian Lahan usaha tani Mekanisasi pertanian Menteri Pertanian Perguruan tinggi pertanian Perguruan tinggi pertanian di Indonesia Permakultur Pertanian bebas ternak Pertanian berkelanjutan Pertanian ekstensif Pertanian intensif Pertanian organik Pertanian urban Peternakan Peternakan pabrik Wanatani Sejarah Sejarah pertanian Sejarah pertanian organik Revolusi pertanian Arab Revolusi pertanian Inggris Revo...