Exceptional inverse image functor

In mathematics, more specifically sheaf theory, a branch of topology and algebraic geometry, the exceptional inverse image functor is the fourth and most sophisticated in a series of image functors for sheaves. It is needed to express Verdier duality in its most general form.

Definition

Let f: XY be a continuous map of topological spaces or a morphism of schemes. Then the exceptional inverse image is a functor

Rf!: D(Y) → D(X)

where D(–) denotes the derived category of sheaves of abelian groups or modules over a fixed ring.

It is defined to be the right adjoint of the total derived functor Rf! of the direct image with compact support. Its existence follows from certain properties of Rf! and general theorems about existence of adjoint functors, as does the unicity.

The notation Rf! is an abuse of notation insofar as there is in general no functor f! whose derived functor would be Rf!.

Examples and properties

f!(F) := f G,
where G is the subsheaf of F of which the sections on some open subset U of Y are the sections sF(U) whose support is contained in X. The functor f! is left exact, and the above Rf!, whose existence is guaranteed by abstract nonsense, is indeed the derived functor of this f!. Moreover f! is right adjoint to f!, too.

Duality of the exceptional inverse image functor

Let be a smooth manifold of dimension and let be the unique map which maps everything to one point. For a ring , one finds that is the shifted -orientation sheaf.

On the other hand, let be a smooth -variety of dimension . If denotes the structure morphism then is the shifted canonical sheaf on .

Moreover, let be a smooth -variety of dimension and a prime invertible in . Then where denotes the Tate twist.

Recalling the definition of the compactly supported cohomology as lower-shriek pushforward and noting that below the last means the constant sheaf on and the rest mean that on , , and

the above computation furnishes the -adic Poincaré duality

from the repeated application of the adjunction condition.

References

  • Iversen, Birger (1986), Cohomology of sheaves, Universitext, Berlin, New York: Springer-Verlag, ISBN 978-3-540-16389-3, MR 0842190 treats the topological setting
  • Artin, Michael (1972). Alexandre Grothendieck; Jean-Louis Verdier (eds.). Séminaire de Géométrie Algébrique du Bois Marie - 1963-64 - Théorie des topos et cohomologie étale des schémas - (SGA 4) - vol. 3. Lecture notes in mathematics (in French). Vol. 305. Berlin; New York: Springer-Verlag. pp. vi+640. doi:10.1007/BFb0070714. ISBN 978-3-540-06118-2. treats the case of étale sheaves on schemes. See Exposé XVIII, section 3.
  • Gallauer, Martin, An Introduction to Six Functor Formalisms (PDF), pp.10-11 gives the duality statements.

Read other articles:

Membrane surrounding the eye forming a socket in which it moves Tenon's capsuleThe right eye in sagittal section, showing Tenon's capsule (semidiagrammatic).DetailsLocationOrbit (anatomy)IdentifiersLatinvagina bulbi, capsula TenoniMeSHD058475Anatomical terminology[edit on Wikidata] Tenon's capsule (/təˈnoʊn/), also known as the Tenon capsule, fascial sheath of the eyeball (Latin: vagina bulbi) or the fascia bulbi, is a thin membrane which envelops the eyeball from the optic nerve to th...

Beji Caid Essebsiالباجي قائد السبسيPresiden Tunisia ke-5Masa jabatan31 Desember 2014 – 25 Juli 2019Perdana MenteriMehdi JomaaHabib EssidYoussef ChahedPendahuluMoncef MarzoukiPenggantiMohamed Ennaceur(Penjabat)Perdana Menteri Tunisia ke-18Masa jabatan28 Februari 2011 – 24 Desember 2011PresidenFouad Mebazaa (Penjabat)Moncef MarzoukiPendahuluMohamed GhannouchiPenggantiHamadi Jebali (sebagai Kepala Pemerintahan) Informasi pribadiLahirMohamed Beji Caid Essebsi...

У этого термина существуют и другие значения, см. Чакма. Медвежий павиан Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадклас...

Pierre-Alexandre Le CamusBorn(1774-11-17)November 17, 1774MartiniqueDiedNovember 13, 1824(1824-11-13) (aged 49)Le ChesnayResting placePère Lachaise CemeteryNationalityFrenchOccupationpoliticianTitlecomte de FürstensteinHonoursOrder of the Crown of Westphalia (1810) Order of the Seraphim (1810) Pierre-Alexandre Le Camus, Count of Fürstenstein (17 November 1774-30 November 1824) was a French politician. Biography Pierre-Alexandre Le Camus, a Creole from Martinique, met Jérôme Bonapart...

Coordenadas: 41° 2' N 8° 20' 30 O  Portugal Raiva, Pedorido e Paraíso    Freguesia   Localização Raiva, Pedorido e ParaísoLocalização de Raiva, Pedorido e Paraíso em Portugal Coordenadas 41° 2' N 8° 20' 30 O Região Norte Sub-região Tâmega e Sousa Distrito Aveiro Município Castelo de Paiva Código 010610 História Fundação 28 de janeiro de 2013 Administração Tipo Junta de freguesia Características geográficas Área tota...

Cet article ou cette section contient des informations sur un projet de transport (octobre 2022). Il se peut que ces informations soient de nature spéculative et que leur teneur change considérablement alors que les événements approchent. Pont Podilsko-Voskresenskyi Le pont Podilskyi en 2019. Géographie Pays Ukraine Commune Kiev Coordonnées géographiques 50° 28′ 18″ N, 30° 32′ 40″ E Fonction Franchit Dniepr Fonction Pont routier et ferroviaire Ca...

Die Liste der Kulturdenkmale in Rossendorf umfasst sämtliche Kulturdenkmale der Dresdner Gemarkung Rossendorf. Grundlage bildet das Denkmalverzeichnis des Themenstadtplans Dresden, das sämtliche bis Januar 2006 vom Landesamt für Denkmalpflege Sachsen erfassten Kulturdenkmale beinhaltet. Straßen und Plätze in der Gemarkung Rossendorf sind in der Liste der Straßen und Plätze in Rossendorf aufgeführt. Legende Bild: Bild des Kulturdenkmals, ggf. zusätzlich mit einem Link zu weiteren Foto...

1993 single by Rick Astley The Ones You LoveSingle by Rick Astleyfrom the album Body & Soul B-sideCry for HelpReleased23 August 1993 (1993-08-23)[1]Length7:13LabelRCASongwriter(s)Rick Astley, Dave WestProducer(s)Gary Stevenson, Rick AstleyRick Astley singles chronology Hopelessly (1993) The Ones You Love (1993) Sleeping (2001) Music videoThe Ones You Love on YouTube The Ones You Love is a song performed by English singer-songwriter Rick Astley, written by Astley and...

سالم العيدي معلومات شخصية الاسم الكامل سالم راشد جمعة العيدي الميلاد 24 يونيو 1994 (العمر 29 سنة)الإمارات الطول 1.77 م (5 قدم 10 بوصة) مركز اللعب مدافع الجنسية الإمارات العربية المتحدة  معلومات النادي النادي الحالي نادي العروبة الرقم 4 مسيرة الشباب سنوات فريق 2010–2011 عجما�...

Katherine and Jacob Greenfield Hebrew Academy (GHA), founded in 1953,[1] was the first[citation needed] Jewish day school in Metro Atlanta, Georgia, United States. It was located in Sandy Springs.[2][3] GHA was also the first Jewish day school in the country to be accredited by the Southern Association of Colleges and Schools (SACS)[citation needed], and has been honored twice as a National School of Excellence by the Council for American Private Educat...

2001 single by Train Drops of JupiterSingle by Trainfrom the album Drops of Jupiter B-sideIt's LoveThis Is Not Your LifeSharksReleasedJanuary 29, 2001 (2001-01-29)StudioSouthern Tracks Recording (Atlanta, Georgia, US)GenreRock[1]Length4:20LabelColumbiaSongwriter(s)TrainProducer(s)Brendan O'BrienTrain singles chronology Ramble On (2001) Drops of Jupiter (2001) Something More (2001) Audio samplefilehelpMusic videoDrops of Jupiter (Tell Me) on YouTube Drops of Jupiter, ini...

Species of mammal Maxwell's duiker[1] Conservation status Least Concern (IUCN 3.1)[2] CITES Appendix II (CITES)[3] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Artiodactyla Family: Bovidae Genus: Philantomba Species: P. maxwellii Binomial name Philantomba maxwellii(C. H. Smith, 1827) The range map of Maxwell's duiker Synonyms Cephalophus maxwellii Hamilton Smith, 1827 Antilope philantomba C. H. Smi...

بريمر فولكان     تاريخ التأسيس 23 أكتوبر 1893  الدولة ألمانيا  المقر الرئيسي بريمن-فيجيزاك،  وبريمن  الشركات التابعة شيتشاو سيبيكفيرت  الصناعة بناء السفن  المنتجات الغواصة الألمانية يو-292[1][2]،  والغواصة الألمانية يو-293[3][2]،  والغواصة ا...

Michael BarnesThông tin cá nhânTên đầy đủ Michael Thomas BarnesNgày sinh 24 tháng 6 năm 1988 (35 tuổi)Nơi sinh Chorley, Lancashire, AnhVị trí Tiền vệ cánh tráiThông tin câu lạc bộĐội hiện nay Charnock RichardSự nghiệp cầu thủ trẻ000?–2005 Lancaster City2005–2008 Manchester UnitedSự nghiệp cầu thủ chuyên nghiệp*Năm Đội ST (BT)2006–2008 Manchester United 0 (0)2008 → Chesterfield (cho mượn) 3 (0)2008 → Shrewsbury Town...

American actress and singer (born 1986) Lindsay LohanLohan in 2019BornLindsay Dee Lohan (1986-07-02) July 2, 1986 (age 37)New York City, U.S.OccupationsActresssingersongwriterYears active1989–presentSpouse Bader Shammas ​(m. 2022)​Children1ParentsMichael LohanDina LohanRelativesAliana Lohan (sister)Musical careerGenresPoppop rock[1][2][3]LabelsCasablancaUniversal MotownRepublicWebsitelindsaylohanofficial.com Musical artist Linds...

46°46′09″N 23°35′12″E / 46.7692686°N 23.5865425°E / 46.7692686; 23.5865425 The Ethnographic Museum of Transylvania (Romanian: Muzeul Etnografic al Transilvaniei; Hungarian: Erdélyi néprajzi múzeum) is situated in Cluj-Napoca, Romania. With a history of almost 100 years, the Ethnographic Museum of Transylvania is one of the first and greatest of its kind in Romania. It has two exhibition sections, one of which is to be found in downtown Reduta Palace (21,...

  هذه المقالة عن فيلم كركر. لمعانٍ أخرى، طالع كركر (توضيح). كركرملصق الفيلممعلومات عامةالصنف الفني فيلم كوميدي تاريخ الصدور 1 يوليو 2007اللغة الأصلية العربيةالبلد  مصرالطاقمالمخرج علي رجبالكاتب أحمد عبد اللهالبطولة محمد سعدياسمين عبد العزيزحسن حسنيرجاء الجداويعلاء...

Keuangan bagian dari Ekonomi Pasar uangPasar Bond  · Pasar bursa efek (Ekuitas)  · Devisa  · Derivatif  · Komoditi  · Uang  · Spot (tunai)  · Pasar OTC  · Real estat  · Ekuitas swasta Pelaku pasarInvestor  · Spekulan  · Lembaga Investor Keuangan korporasiStruktur keuangan  · Penganggaran pemodalan  · Manajemen risiko keuangan  · Merger dan A...

University in Bihar, India This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Nalanda Open University – news · newspapers · books · scholar · JSTOR (March 2021) (Learn how and when to remove this template message) Nalanda Open UniversityTypePublicEstablished1987 (36 years ago) (1987)ChancellorGove...

Austronesian language spoken in Vanuatu BieriaVovoNative toVanuatuRegionEpi IslandEthnicity100 (2006?)[1]Native speakers70 (2006)[2]Language familyAustronesian Malayo-PolynesianOceanicSouthern OceanicCentral VanuatuEpiBieria–MaiiBieriaDialects Bieria Vovo Language codesISO 639-3brjGlottologbier1246ELPBieriaVovoBieria is classified as Critically Endangered by the UNESCO Atlas of the World's Languages in Danger Bieria, or Vovo (Wowo), is an Oceanic language spoken on...