Exceptional inverse image functor

In mathematics, more specifically sheaf theory, a branch of topology and algebraic geometry, the exceptional inverse image functor is the fourth and most sophisticated in a series of image functors for sheaves. It is needed to express Verdier duality in its most general form.

Definition

Let f: XY be a continuous map of topological spaces or a morphism of schemes. Then the exceptional inverse image is a functor

Rf!: D(Y) → D(X)

where D(–) denotes the derived category of sheaves of abelian groups or modules over a fixed ring.

It is defined to be the right adjoint of the total derived functor Rf! of the direct image with compact support. Its existence follows from certain properties of Rf! and general theorems about existence of adjoint functors, as does the unicity.

The notation Rf! is an abuse of notation insofar as there is in general no functor f! whose derived functor would be Rf!.

Examples and properties

f!(F) := f G,
where G is the subsheaf of F of which the sections on some open subset U of Y are the sections sF(U) whose support is contained in X. The functor f! is left exact, and the above Rf!, whose existence is guaranteed by abstract nonsense, is indeed the derived functor of this f!. Moreover f! is right adjoint to f!, too.

Duality of the exceptional inverse image functor

Let be a smooth manifold of dimension and let be the unique map which maps everything to one point. For a ring , one finds that is the shifted -orientation sheaf.

On the other hand, let be a smooth -variety of dimension . If denotes the structure morphism then is the shifted canonical sheaf on .

Moreover, let be a smooth -variety of dimension and a prime invertible in . Then where denotes the Tate twist.

Recalling the definition of the compactly supported cohomology as lower-shriek pushforward and noting that below the last means the constant sheaf on and the rest mean that on , , and

the above computation furnishes the -adic Poincaré duality

from the repeated application of the adjunction condition.

References

  • Iversen, Birger (1986), Cohomology of sheaves, Universitext, Berlin, New York: Springer-Verlag, ISBN 978-3-540-16389-3, MR 0842190 treats the topological setting
  • Artin, Michael (1972). Alexandre Grothendieck; Jean-Louis Verdier (eds.). Séminaire de Géométrie Algébrique du Bois Marie - 1963-64 - Théorie des topos et cohomologie étale des schémas - (SGA 4) - vol. 3. Lecture notes in mathematics (in French). Vol. 305. Berlin; New York: Springer-Verlag. pp. vi+640. doi:10.1007/BFb0070714. ISBN 978-3-540-06118-2. treats the case of étale sheaves on schemes. See Exposé XVIII, section 3.
  • Gallauer, Martin, An Introduction to Six Functor Formalisms (PDF), pp.10-11 gives the duality statements.

Read other articles:

Kenapa Harus Inul?Genre Drama Roman Musikal SutradaraArswendo AtmowilotoPemeran Inul Daratista Irgi Ahmad Fahrezi Torro Margens Chintami Atmanegara Anwar Fuady Renita Sukardi Ivanka Suwandi Negara asalIndonesiaBahasa asliBahasa IndonesiaJmlh. musim2Jmlh. episode76ProduksiProduser eksekutifElly Yanti NoorProduserLeo SutantoDurasi60—90 menitRumah produksiLenza FilmDistributorSurya Citra MediaRilis asliJaringanSCTVRilisSabtu, 28 Juni 2003 –Sabtu, 3 Desember 2004 Kenapa Harus Inul? adal...

 

 

Hamid Roesdi Informasi pribadiLahir1911Pagak, Kabupaten Malang, Keresidenan Pasuruan, Hindia BelandaMeninggal8 Maret 1949Malang, Jawa Timur, IndonesiaSuami/istriSiti Fatimah Hamid RoesdiKarier militerPihak IndonesiaDinas/cabang TNI Angkatan DaratPangkatMayor TNIPertempuran/perangRevolusi Nasional IndonesiaSunting kotak info • L • B Mayor TNI Hamid Roesdi, juga dieja Hamid Rusdi (1911 - 8 Maret 1949) merupakan seorang pejuang asal Malang yang berhasil menumpas PKI pada tahun...

 

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

Запрос «Большая Дмитровка» перенаправляется сюда; см. также другие значения. У этого термина существуют и другие значения, см. Дмитровка. Большая Дмитровка В районе пересечения с Копьёвским переулком, после реконструкции 2013 года Общая информация Страна Россия Город М...

 

 

Sint-TruidenNama lengkapKoninklijke Sint-TruidenseVoetbalverenigingJulukanDe Kanaries (The Canaries)Berdiri23 February 1924StadionStayen, Sint-Truiden(Kapasitas: 14,600[1])PemilikDMM.comKetuaDavid MeekersManajerBernd HollerbachLigaBelgian First Division A2020–21Belgian First Division A, 10thSitus webSitus web resmi klub Kostum kandang Kostum tandang Kostum ketiga Musim iniKoninklijke Sint-Truidense Voetbalvereniging (pengucapan bahasa Belanda: [ˈkoːnɪŋkləkə sɪnt trœy̯d...

 

 

Suburb of Brisbane, Queensland, AustraliaInalaBrisbane, QueenslandSuburb sign at Tamarind Street, InalaInalaCoordinates27°35′24″S 152°58′14″E / 27.59°S 152.9705°E / -27.59; 152.9705 (Inala (centre of suburb))Population15,273 (SAL 2021)[1]Established1946Postcode(s)4077Area6.3 km2 (2.4 sq mi)Time zoneAEST (UTC+10:00)Location22.1 km (14 mi) SW of Brisbane GPOLGA(s)City of Brisbane(Forest Lake Ward)[2]State...

Chronologie de la France ◄◄ 1559 1560 1561 1562 1563 1564 1565 1566 1567 ►► Chronologies 19 mars : paix d’Amboise.Données clés 1560 1561 1562  1563  1564 1565 1566Décennies :1530 1540 1550  1560  1570 1580 1590Siècles :XIVe XVe  XVIe  XVIIe XVIIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Architecture, Arts plastiques (Dessin, Gravure, Peinture et Sculpture), Littérature et Musique classique  ...

 

 

Government schoolHelen Liang Memorial Secondary SchoolLocationSha Tin, the New Territories, Hong KongCoordinates22°21′42″N 114°10′26″E / 22.36167°N 114.17389°E / 22.36167; 114.17389InformationTypeGovernment schoolMottoEruditio Et Commentatio (博學慎思)[1]Founded1961[2] (Primary School) 1977[3] (Sheung Wan) 1988[3] (Sha Tin)PrincipalMr. Chow Shau-on (周守安) Helen Liang Memorial Secondary SchoolHelen Liang Memorial Sec...

 

 

Bhumika ChawlaBhumika Chawla at the 60th Filmfare Awards South 2014LahirRachna Chawla21 Agustus 1978 (umur 45)[1]New Delhi, India[1]Nama lainBhoomikaPekerjaanAktris, mantan peragawatiTahun aktif2000–sekarangSuami/istriBharath Thakur ​(m. 2007)​ Bhumika Chawla (lahir Rachna Chawla pada 21 Agustus 1978[1]) adalah seorang aktris dan seorang mantan peragawati asal India.[2] Ia memulai debutnya pada film Telugu Yuvakudu...

POLG2 التراكيب المتوفرة بنك بيانات البروتينOrtholog search: PDBe RCSB قائمة رموز معرفات بنك بيانات البروتين 2G4C, 3IKL, 3IKM, 4ZTU, 4ZTZ, 5C53, 5C51, 5C52 المعرفات الأسماء المستعارة POLG2, HP55, MTPOLB, PEOA4, POLB, POLG-BETA, POLGB, polymerase (DNA) gamma 2, accessory subunit, DNA polymerase gamma 2, accessory subunit, MTDPS16, MTDPS16A, MTDPS16B معرفات خارجية الوراثة المندلية...

 

 

Nonprofit organization in New York City The Center for Jewish HistoryCenter for Jewish History logoThe Center for Jewish History on 16th StreetEstablished2000Location15 West 16th StreetManhattan, New York U.S. 10011Coordinates40°44′17″N 73°59′38″W / 40.738047°N 73.993821°W / 40.738047; -73.993821Public transit accessNew York City Subway: ​​​​​​​ at 14th Street–Union SquareNew York City Bus: M1, M2, M3, M55, M14A, ...

 

 

Richard ArnoldLahir26 November 1963 (umur 60)Cheverly, Maryland, Amerika SerikatStatusAktifKebangsaanAmerika SerikatPekerjaanGuru biologiKarier luar angkasaAntariksawan NASAWaktu di luar angkasa209 hari 13 jam 29 menitSeleksi2004 NASA Group 19Total EVA5Total waktu EVA32 jam 4 menitMisiSTS-119, Soyuz MS-08 (Ekspedisi 55/56)Lambang misi Richard Robert Ricky Arnold II (lahir 26 November 1963) adalah seorang pengajar Amerika Serikat dan antariksawan NASA. Ia terbang pada misi pesawat ulang ...

عرب العرامشه   الإحداثيات 33°05′24″N 35°13′43″E / 33.09005°N 35.228627777778°E / 33.09005; 35.228627777778   تقسيم إداري  البلد إسرائيل  التقسيم الأعلى المجلس الإقليمي لمطه أشر  [لغات أخرى]‏  خصائص جغرافية ارتفاع 470 متر  عدد السكان  عدد السكان 1682 (2019)[1]  معلوم...

 

 

  لمعانٍ أخرى، طالع أييا باراسكيفي (توضيح). أييا باراسكيفي تقسيم إداري البلد اليونان  [1] خصائص جغرافية إحداثيات 38°34′55″N 22°44′35″E / 38.581944444444°N 22.743055555556°E / 38.581944444444; 22.743055555556   الارتفاع 150 متر  السكان التعداد السكاني 188 (resident population of Greece) (2001)217 (resident po...

 

 

The Military ranks of Belarus are the military insignia used by the Armed Forces of Belarus. Being a former member of Soviet Union, Belarus shares a rank structure similar to that of Russia.[1][page needed] Belarus is a landlocked country, and does not possess a navy.[2] Commissioned officer ranks The rank insignia of commissioned officers. Rank group General / flag officers Senior officers Junior officers Officer cadet  Belarusian Ground Forces[3]vt...

Erika Kinsey Erika Kinsey en 2016. Informations Disciplines Saut en hauteur Période d'activité 2003 - Nationalité Suédoise Naissance 10 mars 1988 (36 ans) Östersund Taille 1,85 m Masse 68 kg Entraîneur Daniel Kinsey Records Record : 1,97 m (2015) Palmarès Médailles obtenues Champ. d'Europe juniors 1 - - Championnats de Suède 4 6 5 modifier  Erika Anna Kristina Kinsey née Wiklund (née le 10 mars 1988 à Östersund) est une athlète suédoise spécialiste du saut en h...

 

 

Public Administration of Spain Logo of the General State Administration The General State Administration (Spanish: Administración General del Estado) is one of the Public Administrations of Spain. It is the only administration with powers throughout the national territory and it is controlled by the central government. It comprises a: Central Organization (Government, Council of Ministers, Government Delegated Committees, Ministries, General Commission of Secretaries of State and Undersecret...

 

 

Newspaper in Plymouth, Massachusetts Old Colony Memorial, 1824 The Old Colony Memorial (est.1822) is a semiweekly newspaper published in Plymouth, Massachusetts.[1] Gannett owns the paper;[2] previous owners include the George W. Prescott Publishing Co.[3] and the Memorial Press Group. History 19th century The Old Colony Memorial began in 1822.[4] Publishers have included George F. Andrews, Winslow W. Avery, Allen Danforth, James A. Danforth, Charles Carroll Do...

2006 South Korean drama film directed by Kim Dae-woo For the 1993 film by Peter Delpeut, see The Forbidden Quest. Forbidden QuestForbidden Quest movie posterKorean nameHangul음란서생Hanja淫亂書生Revised RomanizationEumranseosaengMcCune–ReischauerŬmransŏsaeng Directed byKim Dae-wooWritten byKim Dae-wooProduced byYun In-beom Kim Su-jin Im Jeong-haStarringHan Suk-kyuLee Beom-sooKim Min-jungCinematographyKim Ji-yongEdited bySteve M. Choe Kim Chang-juMusic byMok Young-jinDistributed by...

 

 

Pour les articles homonymes, voir Gex (homonymie). Pays de Gex Agglo Administration Pays France Région Auvergne-Rhône-Alpes Département Ain Forme Communauté d'agglomération Siège Gex Communes 27 Président Patrice Dunand (DVD) Date de création 31 mai 1995 (Communauté de communes) 1er janvier 2019 (Communauté d'agglomération) Code SIREN 240100750 Démographie Population 102 027 hab. (2021) Densité 252 hab./km2 Géographie Superficie 404,90 km2 Liens Site web htt...