Exalcomm

In algebra, Exalcomm is a functor classifying the extensions of a commutative algebra by a module. More precisely, the elements of Exalcommk(R,M) are isomorphism classes of commutative k-algebras E with a homomorphism onto the k-algebra R whose kernel is the R-module M (with all pairs of elements in M having product 0). Note that some authors use Exal as the same functor. There are similar functors Exal and Exan for non-commutative rings and algebras, and functors Exaltop, Exantop, and Exalcotop that take a topology into account.

"Exalcomm" is an abbreviation for "COMMutative ALgebra EXtension" (or rather for the corresponding French phrase). It was introduced by Grothendieck & Dieudonné (1964, 18.4.2).

Exalcomm is one of the André–Quillen cohomology groups and one of the Lichtenbaum–Schlessinger functors.

Given homomorphisms of commutative rings A → B → C and a C-module L there is an exact sequence of A-modules (Grothendieck & Dieudonné 1964, 20.2.3.1)

where DerA(B,L) is the module of derivations of the A-algebra B with values in L. This sequence can be extended further to the right using André–Quillen cohomology.

Square-zero extensions

In order to understand the construction of Exal, the notion of square-zero extensions must be defined. Fix a topos and let all algebras be algebras over it. Note that the topos of a point gives the special case of commutative rings, so the topos hypothesis can be ignored on a first reading.

Definition

In order to define the category we need to define what a square-zero extension actually is. Given a surjective morphism of -algebras it is called a square-zero extension if the kernel of has the property is the zero ideal.

Remark

Note that the kernel can be equipped with a -module structure as follows: since is surjective, any has a lift to a , so for . Since any lift differs by an element in the kernel, and

because the ideal is square-zero, this module structure is well-defined.

Examples

From deformations over the dual numbers

Square-zero extensions are a generalization of deformations over the dual numbers. For example, a deformation over the dual numbers

has the associated square-zero extension

of -algebras.

From more general deformations

But, because the idea of square zero-extensions is more general, deformations over where will give examples of square-zero extensions.

Trivial square-zero extension

For a -module , there is a trivial square-zero extension given by where the product structure is given by

hence the associated square-zero extension is

where the surjection is the projection map forgetting .

Construction

The general abstract construction of Exal[1] follows from first defining a category of extensions over a topos (or just the category of commutative rings), then extracting a subcategory where a base ring is fixed, and then using a functor to get the module of commutative algebra extensions for a fixed .

General Exal

For this fixed topos, let be the category of pairs where is a surjective morphism of -algebras such that the kernel is square-zero, where morphisms are defined as commutative diagrams between . There is a functor

sending a pair to a pair where is a -module.

ExalA, ExalA(B, –)

Then, there is an overcategory denoted (meaning there is a functor ) where the objects are pairs , but the first ring is fixed, so morphisms are of the form

There is a further reduction to another overcategory where morphisms are of the form

ExalA(B,I )

Finally, the category has a fixed kernel of the square-zero extensions. Note that in , for a fixed , there is the subcategory where is a -module, so it is equivalent to . Hence, the image of under the functor lives in .

The isomorphism classes of objects has the structure of a -module since is a Picard stack, so the category can be turned into a module .

Structure of ExalA(B, I )

There are a few results on the structure of and which are useful.

Automorphisms

The group of automorphisms of an object can be identified with the automorphisms of the trivial extension (explicitly, we mean automorphisms compatible with both the inclusion and projection ). These are classified by the derivations module . Hence, the category is a torsor. In fact, this could also be interpreted as a Gerbe since this is a group acting on a stack.

Composition of extensions

There is another useful result about the categories describing the extensions of , there is an isomorphism

It can be interpreted as saying the square-zero extension from a deformation in two directions can be decomposed into a pair of square-zero extensions, each in the direction of one of the deformations.

Application

For example, the deformations given by infinitesimals where gives the isomorphism

where is the module of these two infinitesimals. In particular, when relating this to Kodaira-Spencer theory, and using the comparison with the cotangent complex (given below) this means all such deformations are classified by

hence they are just a pair of first order deformations paired together.

Relation with the cotangent complex

The cotangent complex contains all of the information about a deformation problem, and it is a fundamental theorem that given a morphism of rings over a topos (note taking as the point topos shows this generalizes the construction for general rings), there is a functorial isomorphism

[1](theorem III.1.2.3)

So, given a commutative square of ring morphisms

over there is a square

whose horizontal arrows are isomorphisms and has the structure of a -module from the ring morphism.

See also

References

  1. ^ a b Illusie, Luc. Complexe Cotangent et Deformations I. pp. 151–168.

Read other articles:

Strada statale 431di VelateDenominazioni successiveStrada comunale Nuova strada ANAS 177 di Gazzada, successivamente strada statale 707 Raccordo Gazzada-Varese (tratto innesto A8-Varese) LocalizzazioneStato Italia Regioni Lombardia DatiClassificazioneStrada statale InizioA8 uscita Varese FineCasciago Lunghezza10,300[1] km Provvedimento di istituzioneD.M. 7/08/1963 - G.U. 250 del 23/09/1963[2] GestoreTratte ANAS: nessuna (dal 2001 la gestione è passata alla Provincia...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Confessor novel – news · newspapers · books · scholar · JSTOR (November 2012) (Learn how and when ...

 

Sword Art Online: AlicizationPoster promosi serial anime Sword Art Online: Alicizationソードアート・オンライン -アリシゼーション-(Sōdo Āto Onrain -Arishizēshon-)GenrePetualangan, isekai, fiksi ilmiah Seri animeSutradaraManabu OnoProduserShōki NiwaTakaaki YuasaYōsuke FutamiMisato AokiKaoru AdachiRyūtarō KawakamiMusikYuki KajiuraStudioA-1 PicturesPelisensiAUS Madman EntertainmentNA Aniplex of AmericaUK Anime LimitedSaluranasliTokyo MX, Tochigi TV, GTV, BS11, MBS, AT-X...

State park in California, United States Mandalay State BeachView of Mandalay Beach, looking towards Reliant Energy power station and mountains above the City of Ventura in the backgroundShow map of CaliforniaShow map of the United StatesLocationVentura County, California, United StatesNearest cityOxnard, CaliforniaCoordinates34°12′0″N 119°14′57″W / 34.20000°N 119.24917°W / 34.20000; -119.24917Area92 acres (37 ha)Established1985; 39 ye...

 

Earl WessexJames di 2023Kelahiran17 Desember 2007 (umur 16)Frimley Park Hospital, Frimley, Surrey, Britania RayaWangsaWindsor (resmi)Glücksburg (jalur ayah)Nama lengkapJames Alexander Philip Theo Mountbatten-WindsorAyahPangeran Edward, Adipati EdinburghIbuSophie Rhys-Jones Keluarga Kerajaan Britania Rayadan Wilayah Persemakmuran lainnya Baginda Sang RajaBaginda Sang Permaisuri Paduka Sang Pangeran WalesPaduka Sang Putri Wales Paduka Pangeran George dari Wales Paduka Putri Charlotte dari...

 

Treaty setting territory of new Kingdom of Greece This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's lead section may be too long. Please read the length guidelines and help move details into the article's body. (July 2021) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may ...

Bernard Lietaer Bernard Lietaer (Lauwe, 7 febbraio 1942 – Hoyerhagen, 4 febbraio 2019[1]) è stato un economista belga, teorico della moneta complementare. Indice 1 Biografia 2 Opere principali 3 Note 4 Altri progetti 5 Collegamenti esterni Biografia Laureatosi presso il Massachusetts Institute of Technology nel 1971 con una tesi sul funzionamento del sistema monetario fiat nell'ambito del mercato valutario moderno,[2] egli riceve improvvisamente l'attenzione del mondo accad...

 

Kerangka 3 prajurit tertembus panah ditemukan di Burial Ridge. Tulang belulang tertembus anak panah pada kerangka yang ditemukan di Burial Ridge. Burial Ridge adalah sebuah permakaman suku Lenape di sebuah jurang menghadap Raritan Bay, tepatnya di daerah yang sekarang menjadi Tottenville, Staten Island. Permakaman ini adalah permakaman pra-Eropa terbesar di New York City, tidak bertandadan ada di dalam kawasan Conference House Park. Bukti penghunian sebelum Pribumi Amerika masih tampak di sep...

 

Condition making it difficult or impossible to see in relatively low light Medical conditionNyctalopiaOther namesNight blindnessEffect of night-blindness. Left: normal night vision. Right: night-blind.SpecialtyOphthalmology  Nyctalopia (/ˌnɪktəˈloʊpiə/; from Ancient Greek νύκτ- (núkt-) 'night', ἀλαός (alaós) 'blind, invisible', and ὄψ (óps) 'eye'),[1] also called night-blindness, is a condition making it difficult or imp...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

Viện Nghiên cứu lập pháp Quốc hội Việt Nam Quốc kỳ Việt Nam Quốc huy Việt Nam Cơ cấu tổ chức Phương thức liên hệ ' Trang web quochoi.vn/viennghiencuulapphap Cơ quan tương đương {{{a}}} Viện Nghiên cứu lập pháp là cơ quan thuộc Ủy ban Thường vụ Quốc hội, có chức năng nghiên cứu khoa học lập pháp, những vấn đề lý luận, thực tiễn về tổ chức và hoạt động của Quốc hội Việt Nam; tổ ch...

 

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

Mdewakanton and Wahpekute bands of the Lower Sioux Flag of the Lower Sioux Indian Community Location of Lower Sioux Indian Community Location of Lower Sioux Indian Community in Redwood County The Lower Sioux Indian Community, (Dakota: Caŋṡa'yapi; Lakota: Čhaŋšáyapi[1]) also known as the Mdewakanton Tribal Reservation, is an Indian reservation located along the southern bank of the Minnesota River in Paxton and Sherman townships in Redwood County, Minnesota. Its administrative h...

 

Аллегория целомудрия Ханса Мемлинга Целому́дрие (по-видимому, калька с софросюне, греч. σωφροσύνη + σώφρων[1]) — моральная добродетель, означающая полное воздержание от половой жизни (для монахов или для мирян до брака и во вдовстве), либо, уже в браке, хранение верно...

 

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

 

American politician Joe GallegosJoe Gallegos in 2014Member of the Oregon House of Representativesfrom the 30th[1] districtIn officeJanuary 14, 2013 – January 9, 2017Preceded byShawn LindsaySucceeded byJaneen Sollman Personal detailsBorn (1941-11-28) November 28, 1941 (age 82)San Antonio, Texas, U.S.[2]Political partyDemocraticResidence(s)Hillsboro, Oregon, U.S.EducationPortland State University (BS, MSW)University of Denver (PhD)Websiteelectjoegalle...

 

British colony from 1946 to 1963 Crown Colony of North Borneo1946–1963 Flag Coat of arms Anthem: God Save the King (1946–1952)God Save the Queen (1952–1963) StatusBritish colonyCapitalJesseltonCommon languagesEnglish, Bajau, Murut, Chinese, Kadazan Dusun, Sabah MalayMonarch • 1946–1952 George VI• 1952–1963 Elizabeth II Governor • 1946–1949 Edward Twining• 1959–1963 William Goode Historical eraNew Imperialism• North Borneo ce...

Hong Kong politician You can help expand this article with text translated from the corresponding article in Chinese. (March 2023) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not translate text that appea...

 

Puerto Rican musician and actress (1922–2002) Marquita RiveraRivera in the 1940sBornMaría Heroína Rivera de Santiago(1922-05-18)May 18, 1922Fajardo, Puerto RicoDiedOctober 21, 2002(2002-10-21) (aged 80)Los Angeles, California, U.S.OccupationsActressdancercomedianYears active1943–2002Spouses Albert Vernon Ashbrook ​ ​(m. 1946; div. 1949)​ Eugene N. Biscardi II ​ ​(m. 1951; died 1980)​...