The ESC measurement relies on the particularities of the outer-most layer of the human skin, the stratum corneum (SC), which consists of a lipid corneocyte matrix crossed by skin appendages (sweat glands and their follicles) as described in Electrical properties of skin at moderate voltages: contribution of appendageal macropores.[3] According to the authors the stratum corneum is electrically insulating against DC voltages under 10V and only its appendageal pathways are conductive.
In the hairless skin, such as the palms of the hands and soles of the feet, in contact with the electrodes, the eccrine sweat glands are the principal conductive pathways this is why the ESC measurement technologies focus only on those skin parts.
These sweat glands are innervated by the sympathetic autonomic peripheral nervous system. According to Sato,[4] both adrenergic and cholinergic-muscarinic neurons participate, in the following physiological proportions: adrenergic 2/7 and cholinergic 5/7.
Particularities of the autonomic sympathetic nerve fibers that innervate sweat glands are that they are long (the postganglionic nerves start at the spinal cord and may end at the palm or sole), thin, unmyelinated or thinly myelinatedC fibers. Because of these characteristics, they are prone to damage early in many neuropathic processes; assessing sweat gland nerve function, or dysfunction, therefore, can be used as a surrogate for the damage imparted to small caliber sensory nerves in neuropathy.
During normal physiological function, activation of eccrine sweat glands starts with a “chemical” stimulus. For instance, in the cholinergic pathway (the dominant pathway), this leads to the following sequence, or activation cascade:[5]
The G proteins, or their intracellular messengers, then modulate ion channels, creating an ion flux through the membrane;
This polarizes the gland to voltages around 10 mV and always less than 100mV electrical potential difference between the two sides of the gland wall[6]
Technology
Impeto medical: Sudoscan
Summary
For the purposes of measuring Electrochemical Skin Conductance Sudoscan technology activates the sweat gland with an “electrical” stimulus. The applied voltage directly polarizes the gland with voltages between 100 mV to 1000 mV. This induces ion fluxes across the gland wall, depending on the electrochemical gradient of the ions. Because the current applied is high compared to the physiological current, the test could be compared to a “stress test” for sweat glands.
In fact, firm application of the hands and feet against the electrodes blocks physiological sweating, and the active measure extracts electro-active ions (i. e., chloride near the anode, proton near the cathode) and pulls them towards the electrodes.
The resulting conductance is then given for each foot and hand in μS (micro-Siemens).
Details
Currently, ESC measurement can be obtained with the use of a medical device, called Sudoscan.[7][8] No specific patient preparation or medical personnel training is required. The measure lasts less than 3 minutes, and is innocuous and non-invasive.[9]
The apparatus consists of stainless-steelelectrodes for the hands and the feet which are connected to a computer for recording and data management purposes. To conduct an ESC test, the patients place their hands and feet on the electrodes. Sweat glands are most numerous on the palms of the hands and soles of the feet, and thus well suited for sudomotor function evaluation.[10]
The electrodes are used alternatively as anode or cathode. A direct current (DC) incremental voltage under 4 volts is applied on the anode. This DC, through reverse iontophoresis, induces a voltage on the cathode and generates a current (of an intensity less than 0.3 mA) between the anode and the cathode, related to electro-active ions from sweat reacting with the electrodes. The electrochemical phenomena are measured by the two active electrodes (the anode and the cathode) successively in the two active limbs (either hands or feet), whilst the two passive electrodes allow retrieval of the body potential.[8]
During the test, 4 combinations of 15 different low DC voltages are applied. The resulting Electrochemical Skin Conductances (ESC) for each hand and foot are expressed in μS (micro-Siemens). The test also evaluates the percentage of asymmetry between the left and right side, for both hands and feet ESC, providing an assessment of whether one side is more affected than the other.[11]
Withings: scales
Summary
Withings integrated Sudoscan[12] technology into its scale (FDA clearance[13]) in order to provide large adoption of the measurement and allow for at home follow-up of patients with neuropathies.
Details
The Withings technology is based on the same principle but only measure the ESC on foot from its BodyComp[14] and BodyScan[15] scales. A clinical trial (agreement study) demonstrated the correlation between the BodyScan scale and Sudoscan measurements.[16] More generally the adoption of a technology going from only hospital measurements to home measurements allow the building of Real World Evidence (RWE) time series profile for patients.
Alternative methods and technologies
There are several other clinical tests available to assess sudomotor and/or small fiber function[17][18] and/or peripheral or cardiac neuropathy.[19] These may employ a measurement target other than the sweat glands, and/or alternate methodologies.
For sudomotor tests specific clinical assessments include:
Sympathetic Skin Response (SSR),[20] defined as the variation in electrical potential of the skin due to sympathetic sudomotor outflow,
From a physiological standpoint, the pattern of innervation of the sweat gland—namely, the postganglionic sympathetic nerve fibers—allows clinicians and researchers to use sudomotor function testing to assess dysfunction of the autonomic nervous systems (ANS).
To ensure optimal use and interpretation of the ESC, normative values were defined in adults[23] and children.[24] In addition, reproducibility of the method was assessed under clinical conditions, including both healthy controls and patients with common chronic conditions.[25]
Diabetes and two of its main complications: diabetic neuropathy[26][7][27] and autonomic neuropathy.[28] Sensorimotor polyneuropathy (DSPN) is the most common type of polyneuropathy in community-dwelling patients with diabetes, affecting about 25% of them. The course of DSPN is insidious, though, and up to 50% of patients with neuropathy may be asymptomatic, often resulting in delayed diagnosis. Advanced or painful DSPN may result not only in reduced quality of life, but has been statistically associated with retinopathy and nephropathy, and leads to considerable morbidity and mortality.[29] The autonomic nervous system (ANS), of which sudomotor nerves are an integral part, is the primary extrinsic control mechanism regulating heart rate, blood pressure, and myocardial contractility. Cardiac autonomic neuropathy (CAN) describes a dysfunction of the ANS and its regulation of the cardiovascular system. CAN is the strongest predictor for mortality in diabetes.[30][31] Because early symptoms of CAN tend to be nonspecific, its diagnosis is frequently delayed and screening for CAN should be routinely considered in diabetic patients. Assessment of sudomotor function provides a measure of sympathetic cholinergic function in the workup of CAN.
In diabetic wounds, issues like tissue ischemia, hypoxia, high glucose microenvironment and skin dryness disrupt the healing process, leading to delayed or nonhealing wounds and clinical complications. In some cases it led to amputations and in the worst cases to the death.[32][33][34][35] In that context being able to detect earlier the diabetic neuropathies and skin dryness with electrochemical conductance to avoid complication has been proposed for DFU management.[36][37]
Amyloidosis
Amyloidosis such as familial amyloid neuropathy,[38][39]AL amyloidosis,[40] and AA amyloidosis [publication pending]. During the course of AL amyloidosis, peripheral neuropathy occurs in 10–35% of patients; dysautonomia itself is an independent prognostic factor, and assessment of sweat disturbances is routine in the evaluation of amyloidosis. ESC may provide a measure of subclinical autonomic involvement, which is not systematically assessed with more sophisticated equipment.
Cystic fibrosis
The effects of cystic fibrosis on sweat glands were described by Quinton.[41] The performance and potential utility of ESC were assessed in this disease.[42]
Assessment of dysautonomia is important for patient follow-up and assessment of sudomotor function can be helpful in daily practice.[43][44]
Chemotherapy-induced peripheral neuropathy (CIPN)
Chemotherapy-induced peripheral neuropathy is a common, potentially severe and dose-limiting adverse effect of multiple chemotherapeutic agents. CIPN can persist long after the completion of chemotherapy and imposes a significant quality of life and economic burden to cancer survivors. ESC allows for an objective quantification of small fiber impairment and is easy to implement in the clinic.[45][46]
ESC has been evaluated for both early diagnosis of small fiber neuropathy and follow-up of treatment efficacy in each of these conditions.[50][51][52][53]
^Sato, K.; Kang, W. H.; Saga, K.; & Sato, K. T. (1989). "Biology of sweat glands and their disorders. I. Normal sweat gland function". Journal of the American Academy of Dermatology. 20 (4): 537–563. doi:10.1016/S0190-9622(89)70063-3. PMID2654204.
^ abKhalfallah, Kamel; Calvet, Jean-Henri; Brunswick, Philippe; Névoret, Marie-Laure; Ayoub, Hanna; Cassir, Michel (2020). "A Simple and Accurate Method to Assess Autonomic Nervous System through Sudomotor Function". In Yurish, Sergey (ed.). Advances in Biosensors: Reviews, Volume 3 (PDF). IFSA Publishing, S.L. pp. 149–204. ISBN978-84-09-25125-4
^Saad, Mehdi, Dimitri Psimaras, Camille Tafani, Magali Sallansonnet-Froment, Jean-Henri Calvet, Alice Vilier, Jean-Marie Tigaud, et al. 2016. ‘Quick, Non-Invasive and Quantitative Assessment of Small Fiber Neuropathy in Patients Receiving Chemotherapy’. Journal of Neuro-Oncology 127 (2): 373–80. https://doi.org/10.1007/s11060-015-2049-x.
^Sato, K., W. H. Kang, K. Saga, and K. T. Sato. 1989. ‘Biology of Sweat Glands and Their Disorders. I. Normal Sweat Gland Function’. Journal of the American Academy of Dermatology 20 (4): 537–63. https://doi.org/10.1016/s0190-9622(89)70063-3.
^Gatev, Tsvetan, Antoaneta Gateva, Yavor Assyov, Sylvia Nacheva, Julia Petrova, Ivan Poromanski, and Zdravko Kamenov. 2020. ‘The Role of Sudoscan Feet Asymmetry in the Diabetic Foot’. Primary Care Diabetes 14 (1): 47–52. https://doi.org/10.1016/j.pcd.2019.05.003.
^Vinik, A. I.; Smith, A. G.; Singleton, J. R.; Callaghan, B.; Freedman, B. I.; Tuomilehto, J.; ... & Roche, F. (2016). "Normative values for electrochemical skin conductances and impact of ethnicity on quantitative assessment of sudomotor function". Diabetes Technology & Therapeutics. 18 (6): 391–398. doi:10.1089/dia.2015.0396. hdl:2027.42/140359. PMID27057778.
^Yajnik, C. S.; Kantikar, V.; Pande, A.; Deslypere, J. P.; Dupin, J.; Calvet, J. H.; & Bauduceau, B. (2013). "Screening of cardiovascular autonomic neuropathy in patients with diabetes using non-invasive quick and simple assessment of sudomotor function". Diabetes & Metabolism. 39 (2): 126–131. doi:10.1016/j.diabet.2012.09.004. PMID23159130.
^d'Amato, C.; Greco, C.; Lombardo, G.; Frattina, V.; Campo, M.; Cefalo, C. M.; ... & Spallone, V. (2020). "The diagnostic usefulness of the combined COMPASS 31 questionnaire and electrochemical skin conductance for diabetic cardiovascular autonomic neuropathy and diabetic polyneuropathy". Journal of the Peripheral Nervous System. 25 (1): 44–53. doi:10.1111/jns.12366. hdl:11380/1300847. PMID31985124. S2CID210924747.
^Gatev, Tsvetan; Gateva, Antoaneta; Assyov, Yavor; Nacheva, Sylvia; Petrova, Julia; Poromanski, Ivan; Kamenov, Zdravko (February 2020). "The role of Sudoscan feet asymmetry in the diabetic foot". Primary Care Diabetes. 14 (1): 47–52. doi:10.1016/j.pcd.2019.05.003. ISSN1878-0210. PMID31153799. S2CID173995759.
^
Chen, Yu-Long; Zhu, Li-Ping; Xu, Wen-Can; Yang, Xiao-Ping; Ji, Leiquan; Chen, Qiaohui; Lin, Chu-Jia (2023-09-08). "Establishment and Reliability Evaluation of Prognostic Models in Diabetic Foot". Alternative Therapies in Health and Medicine. 29 (8): –8718. ISSN1078-6791. PMID37678850.
^Lefaucheur, J. P.; Zouari, H. G.; Gorram, F.; Nordine, T.; Damy, T.; & Planté-Bordeneuve, V. (2018). "The value of electrochemical skin conductance measurement using Sudoscan® in the assessment of patients with familial amyloid polyneuropathy". Clinical Neurophysiology. 129 (8): 1565–1569. doi:10.1016/j.clinph.2018.05.005. PMID29883834. S2CID47011006.
^Castro, J.; Costa, J.; de Castro, I.; & Conceição, I. (2018). "Electrochemical skin conductance in hereditary amyloidosis related to transthyretin V30M–a promising tool to assess treatment efficacy?". Amyloid. 25 (4): 267–268. doi:10.1080/13506129.2018.1545639. PMID30773060. S2CID73476147.
^Montcuquet, A.; Duchesne, M.; Roussellet, O.; Jaccard, A.; & Magy, L. (2020). "Electrochemical skin conductance values suggest frequent subclinical autonomic involvement in patients with AL amyloidosis". Amyloid: The International Journal of Experimental and Clinical Investigation. 27 (3): 215–216. doi:10.1080/13506129.2020.1757423. PMID32351131. S2CID217548350.
^Pavy-LeTraon, A.; Brefel-Courbon, C.; Dupouy, J.; Ory-Magne, F.; Rascol, O.; & Senard, J. M. (2018). "Combined cardiovascular and sweating autonomic testing to differentiate multiple system atrophy from Parkinson's disease". Neurophysiologie Clinique. 48 (2): 103–110. doi:10.1016/j.neucli.2017.11.003. PMID29249575. S2CID207098455.
^Xu, X.; Liao, J.; Dong, Q.; Qin, F.; Li, J.; Sun, X.; ... & Qiu, W. (2019). "Clinical utility of SUDOSCAN in predicting autonomic neuropathy in patients with Parkinson's disease". Parkinsonism & Related Disorders. 64: 60–65. doi:10.1016/j.parkreldis.2019.03.007. PMID30890381. S2CID84183153.
^Saad, M.; Psimaras, D.; Tafani, C.; Sallansonnet-Froment, M.; Calvet, J. H.; Vilier, A.; ... & Ricard, D. (2016). "Quick, non-invasive and quantitative assessment of small fiber neuropathy in patients receiving chemotherapy". Journal of Neuro-Oncology. 127 (2): 373–380. doi:10.1007/s11060-015-2049-x. PMID26749101. S2CID19058905.
^Zouari, H. G.; Wahab, A.; Ng Wing Tin, S.; Sène, D.; & Lefaucheur, J. P. (2019). "The clinical features of painful small-fiber neuropathy suggesting an origin linked to primary Sjögren's syndrome". Pain Practice. 19 (4): 426–434. doi:10.1111/papr.12763. PMID30636091. S2CID58646701.
^Ng Wing Tin, S.; Zouari, H. G.; Wahab, A.; Sène, D.; & Lefaucheur, J. P. (2019). "Characterization of Neuropathic Pain in Primary Sjögren's Syndrome with Respect to Neurophysiological Evidence of Small-Fiber Neuropathy". Pain Medicine. 20 (5): 979–987. doi:10.1093/pm/pny183. PMID30247738.
^Syngle, A.; Chahal, S.; & Vohra, K. (2021). "Efficacy and tolerability of DPP4 inhibitor, teneligliptin, on autonomic and peripheral neuropathy in type 2 diabetes: an open label, pilot study". Neurological Sciences. 42 (4): 1429–1436. doi:10.1007/s10072-020-04681-2. PMID32803534. S2CID221129340.
Exemple d'émagramme. L’émagramme, l'un des quatre diagrammes thermodynamiques utilisés pour analyser la structure thermique de l'atmosphère, est utilisé pour pointer la température et le point de rosée provenant d'un sondage aérologique par radiosondes, d'un avion ou extrapolés par satellite. Les axes de l'émagramme sont ceux de température (T) et du logarithme de la pression (P) dans un repère semi-logarithmique. Ces axes sont perpendiculaires dans le diagramme original mais la...
Wallachian-Romanian aristocrat, politician, businessman and agriculturalist Alexandru Barbu ȘtirbeiȘtirbei with his seven daughters, on the steps of their palace at BufteaConservative Party chairmanIn officeNovember 6, 1881 – November 22, 1881Romanian Minister of Public WorksIn officeMarch 1888 – November 1888Romanian Minister of the InteriorIn officeNovember 1888 – March 1889Romanian Minister of FinanceIn officeNovember 1891 – December 1891 Perso...
SianoKomuneComune di SianoLokasi Siano di Provinsi SalernoNegaraItaliaWilayah CampaniaProvinsiSalerno (SA)Luas[1] • Total8,57 km2 (3,31 sq mi)Ketinggian[2]126 m (413 ft)Populasi (2016)[3] • Total10.074 • Kepadatan1,200/km2 (3,000/sq mi)Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos84088Kode area telepon081Situs webhttp://www.comune.siano.sa.it Siano adalah sebuah kota dan ...
Playa GirónGéographiePays CubaProvince MatanzasMunicipalité Ciénaga de ZapataAltitude 4 mCoordonnées 22° 04′ N, 81° 02′ ODémographiePopulation 2 000 hab.modifier - modifier le code - modifier Wikidata Panneau commémoratif à Playa Girón Playa Girón est un consejo popular de la municipalité de Ciénaga de Zapata, dont le chef-lieu est Playa Larga, sur la côte sud de la province de Matanzas, Cuba[1]. Elle est passée dans l'histoire en 1961 pour ...
SMA Negeri 13 BekasiInformasiDidirikan5 Juni 1945 (sebagai USB SMA Negeri 13 Bekasi)8 Oktober 2007 (sebagai SMA Negeri 13 Bekasi)JenisNegeriAkreditasiA (Sangat Baik)[1][2]Nomor Statistik Sekolah301026510013[1]Nomor Pokok Sekolah Nasional20231719[2]Kepala SekolahHasim, S.Pd., M.M., CHMP., CNSHP., CNICP., CNHRP., CNBLP.[3]Jumlah kelasX (11 kelas) XI (10 kelas) XII (10 kelas)Jurusan atau peminatanMIPA dan IPSRentang kelasX MIPA, X IPS, XI MIPA, X...
جورج كارلوس فونسيكا Jor Carlos Fonseca جورج كارلوس فونسيكا في أوت 2014 مناصب رئيس الرأس الأخضر في المنصب9 سبتمبر 2011 – 9 نوفمبر 2021 بيدرو بيريس خوسيه ماريا نيفيس معلومات شخصية الميلاد 20 أكتوبر 1950 (العمر 73 سنة)ميندالو، الرأس الأخضر مواطنة الرأس الأخضر الديانة الر...
Francis Crick Premio Nobel per la medicina 1962 Francis Harry Compton Crick (Northampton, 8 giugno 1916 – San Diego, 28 luglio 2004) è stato un neuroscienziato, biofisico, biologo molecolare britannico, premio Nobel per la medicina nel 1962. Indice 1 Biografia 1.1 Origini familiari 1.2 Gli anni giovanili 1.3 Gli anni dell'Università 1.4 L'Ammiragliato 1.4.1 Vita privata 1.5 Cambridge 1.5.1 L'incontro con Watson 1.5.2 La doppia elica 1.6 Il dottorato e il trasferimento a New York 1.7 I...
Grand Prix cycliste de Montréal 2014GénéralitésCourse 5e Grand Prix cycliste de MontréalCompétition UCI World Tour 2014Date 14 septembre 2014Distance 205,7 kmPays traversé(s) CanadaLieu de départ MontréalLieu d'arrivée MontréalÉquipes 19Coureurs au départ 151Coureurs à l'arrivée 109Vitesse moyenne 38,040 km/hRésultatsVainqueur Simon GerransDeuxième Rui CostaTroisième Tony GallopinMeilleur grimpeur Louis VervaekeGrand Prix cycliste de Montréal 2013Grand Prix cyclis...
Лялин переулок Лялин переулок (№ 3) между Покровкой и Лялиной площадью Общая информация Страна Россия Город Москва Округ ЦАО Район Басманный Протяжённость 600 м Метро Курская Курская ЧкаловскаяD2D4 Курская (МЦД) Прежние названия улица Притыкина, Яковлевский переул...
Spanish jesuit theologian Martin DelrioSJBorn17 May 1551Antwerp, Duchy of Brabant, Habsburg NetherlandsDied19 October 1608 (1608-10-20) (aged 57)Leuven, Duchy of Brabant, Spanish NetherlandsKnown forHis six-volume work Magical InvestigationsReligionRoman CatholicismOrdained1589 Martin Anton Delrio SJ (Latin: Martinus Antonius Delrio; Spanish: Martín Antonio del Río; French: Martin-Antoine del Rio; 17 May 1551 – 19 October 1608) was a Dutch Jesuit theologian. He studied...
كوتوكو شوسوي ، فوضوي ياباني مبكر يغطي الانشقاق الياباني خلال فترة الشوى الأولى في الحرب العالمية الثانية خصوم اليابانيين الفرديين للإمبراطورية العسكرية اليابانية قبل وأثناء الحرب العالمية الثانية. المقاومة قبل الحرب العالمية الثانية حادثة الخيانة العظمى أنتقد شوسوي ك�...
فرويدنبرغ علم شعار الإحداثيات 49°45′00″N 9°20′00″E / 49.75°N 9.3333333333333°E / 49.75; 9.3333333333333 [1] تقسيم إداري البلد ألمانيا[2] خصائص جغرافية المساحة 34.78 كيلومتر مربع (1997)[3] ارتفاع 133 متر عدد السكان عدد السكان 3720 (31 ديسمبر 2022)[4]...
Standard Steel Car Company Logo Rechtsform Company Gründung 1902 Auflösung 1934 Sitz Butler, Pennsylvania, USA Branche Eisenbahnwagen, Automobile Schienenfahrzeug, 1967 aufgenommen Schienenfahrzeug, 1968 aufgenommen Schienenfahrzeug, 1968 aufgenommen Auto von Standard Steel Standard Steel Car Company war ein US-amerikanischer Hersteller von Eisenbahnwagen und Automobilen.[1][2] Inhaltsverzeichnis 1 Unternehmensgeschichte 2 Kraftfahrzeuge 3 Modellübersicht 4 Produktionszahl...
Shoulder junction between the scapula and the clavicle Acromioclavicular jointThe left shoulder and acromioclavicular jointGlenoid cavity of the right scapulaDetailsIdentifiersLatinarticulatio acromioclavicularisMeSHD000173TA98A03.5.03.001TA21744FMA25898Anatomical terminology[edit on Wikidata] The acromioclavicular joint, or AC joint, is a joint at the top of the shoulder. It is the junction between the acromion (part of the scapula that forms the highest point of the shoulder) and the cl...
Hungarian poet, writer, soldier The native form of this personal name is Gyarmati és kékkői báró Balassi Bálint. This article uses Western name order when mentioning individuals. Bálint Balassi Balassi Bálint statue at the Kodály körönd in Budapest Baron Bálint Balassi de Kékkő et Gyarmat (Hungarian: Gyarmati és kékkői báró Balassi Bálint, Slovak: Valentín Balaša (Valaša) barón z Ďarmôt a Modrého Kameňa; 20 October 1554 – 30 May 1594) was a Hunga...
For other uses, see Hardanger (disambiguation). District in Vestland, NorwayHardangerDistrictLofthusDistricts of Vestland: Nordfjord Sunnfjord Indre Sogn Ytre Sogn Nordhordland Midthordland Sunnhordland Hardanger VossCountryNorwayCountyVestlandRegionWestern NorwayAdm. CenterOdda (town)Area • Total6,266 km2 (2,419 sq mi)Population (2009) • Total22,810...
For other uses of Benjamin Franklin Medal, see Benjamin Franklin Medal (disambiguation). Benjamin Franklin, after whom this medal is named. A portrait made by Joseph Duplessis (ca. 1785). The Benjamin Franklin Medal presented by the American Philosophical Society located in Philadelphia, Pennsylvania, U.S.A., also called Benjamin Franklin Bicentennial Medal, is awarded since 1906. The originally called Philosophical Society was founded in 1743 by Benjamin Franklin. The award was created to re...