Electric sail

The Heliopause Electrostatic Rapid Transit System (HERTS) is a spacecraft concept using an electric sail

An electric sail (also known as an electric solar wind sail or an E-sail) is a proposed form of spacecraft propulsion using the dynamic pressure of the solar wind as a source of thrust. It creates a "virtual" sail by using small wires to form an electric field that deflects solar wind protons and extracts their momentum. The idea was first conceptualised by Pekka Janhunen in 2006 at the Finnish Meteorological Institute.[1]

Principles of operation and design

Principal of an electrical sail

The electric sail consists of a number of thin, long and conducting tethers which are kept in a high positive potential by an onboard electron gun.[2] The positively charged tethers deflect solar wind protons, thus extracting momentum from them. Simultaneously they attract electrons from the solar wind plasma, producing an electron current. The electron gun compensates for the arriving electric current.

One way to deploy the tethers is to rotate the spacecraft, using centrifugal force to keep them stretched. By fine-tuning the potentials of individual tethers and thus the solar wind force individually, the spacecraft's attitude can be controlled.

E-sail missions can be launched at almost any time with only minor variations in travel time. By contrast, conventional slingshot missions must wait for the planets to reach a particular alignment.[3]

Artist's rendering of ESTCube-1, launched in May 2013, which was intended to be the first satellite to test an electric sail.

The electric solar wind sail has little in common with the traditional solar sail. The E-sail gets its momentum from the solar wind ions, whilst a photonic sail is propelled by photons. Thus, the available pressure is only about 1% of photon pressure; however, this may be compensated by the simplicity of scale-up. In the E-sail, the part of the sail is played by straightened conducting tethers (made of wires) which are placed radially around the host ship. The wires are electrically charged and thus an electric field is created around the wires. The electric field of the wires extends a few dozen metres into the surrounding solar wind plasma. The penetration distance depends on the solar wind plasma density and it scales as the plasma Debye length. Because the solar wind electrons affect the electric field (similarly to the photons on a traditional solar sail), the effective electric radius of the tethers is based on the electric field that is generated around the tether rather than the actual tether itself. This fact also makes it possible to manoeuvre by regulating the tethers' electric charge.

A full-sized sail would have 50–100 straightened tethers with a length of about 20 km (12 mi) each. [4]

[5][6] Compared to a reflective solar light sail, another propellantless deep space propulsion system, the electric solar wind sail could continue to accelerate at greater distances from the Sun, still developing thrust as it cruises toward the outer planets. By the time it reaches the ice giants, it may have accumulated as much as 20 km/s (45,000 mph; 72,000 km/h) velocity, which is on par with the New Horizons probe, but without gravity assists.

In order to minimise damage to the thin tethers from micrometeoroids, the tethers would be formed from multiple strands, 25–50 micrometers in diameter, welded together at regular intervals. Thus, even if one wire were severed, a conducting path along the full length of the braided wire would remain in place. The feasibility of using ultrasonic welding was demonstrated at the University of Helsinki in January 2013.[7]

Development history

Graphical overview electric sail development

Academy of Finland has been funding electric sail development since 2007.[8]

To test the technology, a new European Union-backed electric sail study project was announced by the FMI in December 2010.[9] The EU funding contribution was 1.7 million euros. Its goal was to build laboratory prototypes of the key components, it involved five European countries and ended in November 2013.[10] In the EU evaluation, the project got the highest marks in its category.[11][12] An attempt was made to test the working principles of the electric sail in low Earth orbit in the Estonian nanosatellite ESTCube-1 (2013-2015), but there was a technical failure and the attempt was unsuccessful. The piezoelectric motor used to unfurl the sail failed to turn the reel. In subsequent ground-based testing, a likely reason for the failure was found in a slipring contact which was likely physically damaged by launch vibration.

An international research team that includes Janhunen received funding through a 2015 NIAC Phase II solicitation for further development at NASA's Marshall Space Flight Center.[2][13] Their research project is called 'Heliopause Electrostatic Rapid Transit System' (HERTS).[2][14] The Heliopause Electrostatic Rapid Transit System (HERTS) concept is currently being tested. For HERTS, it might take only 10 to 15 years to make the trip of over 100 astronomical units (15 billion kilometers). In the HERTS concept, multiple, 20 kilometer or so long, 1 millimeter thin, positively charged wires would be extended from a rotating spacecraft.

A new satellite launched in June 2017,[15][16] the Finnish Aalto-1 nanosatellite, currently in orbit, will test the electric sail for deorbiting in 2019.[17][18][19][20][21]

In 2017, Academy of Finland granted Centre of Excellence funding for 2018–2025 to a team that includes Janhunen and members from universities, to establish a Finnish Centre of Excellence in Research of Sustainable Space.[22][23]

Intrinsic limitations

Almost all Earth-orbiting satellites are inside Earth's magnetosphere. However, the electric sail cannot be used inside planetary magnetospheres because the solar wind does not penetrate them, allowing only slower plasma flows and magnetic fields.[24] Instead, inside a planetary magnetosphere, the electric sail may function as a brake, allowing deorbiting of satellites.[25]

Like for other solar sail technologies, while modest variation of the thrust direction can be achieved by inclining the sail, the thrust vector always points more or less radially outward from the Sun. It has been estimated[by whom?] that maximum operational inclination would be 60°, resulting in a thrusting angle of 30° from the outward radial direction. However, like with the sails of a ship, tacking could be used for changing the trajectory. Interstellar ships approaching a sun might use solar wind flow for braking.[25]

Applications

  • Fast missions (> 50 km/s [110,000 mph; 180,000 km/h] or 10 AU [0.00016 light-years; 4.8×10−5 parsecs]) out of the Solar System and heliosphere with small or modest payload
  • As a brake for a small interstellar probe which has been accelerated to high speed by some other means such as laser lightsail[26]
  • Inward-spiralling missions to study the Sun at a closer distance
  • Two-way missions to inner Solar System objects such as asteroids
  • Off-Lagrange point solar wind monitoring spacecraft for predicting space weather with a longer warning time than 1 hour

Fast missions to planet Uranus

Janhunen et al. have proposed a mission to Uranus powered by an electric sail. The mission could reach its destination in about the same time that the earlier Galileo space probe required to arrive at Jupiter, just over one fourth as far away. Galileo took 6 years to reach Jupiter at a cost of $1.6 billion, while Cassini-Huygens took 7 years to get to Saturn and cost almost as much. The sail is expected to consume 540 watts, producing about 0.5 newtons accelerating the craft by about 1 mm/s2. The craft would reach a velocity of about 20 km/s (45,000 mph; 72,000 km/h) by the time it reaches Uranus, 6 years after launch.[3] [27] The downside is that the electric sail cannot be used as a brake, so the craft arrives at a speed of 20 km/s (45,000 mph; 72,000 km/h), limiting the missions to flybys or atmospheric entry missions. Braking would require a conventional chemical rocket.

The proposed craft has three parts: the E-sail module with solar panels and reels to hold the wires; the main body, including chemical thrusters for adjusting trajectory en route and at destination and communications equipment; and a research module to enter Uranus's atmosphere and make measurements for relay to Earth via the main body.[3]

See also

References

  1. ^ Electric Sail For Producing Spacecraft Propulsion. Patent filed on 2 February 2007; PatentScope.
  2. ^ a b c Wall, Mike (9 November 2015). "'Electric Sails' Could Propel Superfast Spacecraft by 2025". Space.com. Retrieved 2015-11-10.
  3. ^ a b c Emerging Technology From the arXiv January 9, 2014. "New Form of Spacecraft Propulsion Proposed For Uranus Mission | MIT Technology Review". Technologyreview.com. Retrieved 2014-01-12.{{cite web}}: CS1 maint: numeric names: authors list (link)
  4. ^ Janhunen, P. (2004). "Electric Sail for Spacecraft Propulsion". Journal of Propulsion and Power. 20 (4): 763–764. doi:10.2514/1.8580. S2CID 122272677.
  5. ^ Janhunen, P.; Sandroos, A. (2007). "Simulation study of solar wind push on a charged wire: Basis of solar wind electric sail propulsion" (PDF). Annales Geophysicae. 25 (3): 755. Bibcode:2007AnGeo..25..755J. doi:10.5194/angeo-25-755-2007.
  6. ^ "The electric solar wind sail by Pekka Janhunen". Retrieved 2008-04-18.
  7. ^ Superthin wire for electric sail space propulsion engineered, Mark Hoffman, Science World Report, 10 Jan 2013.
  8. ^ "Suomen Akatemia Rahoituspäätökset (Academy of Finland Funding decisions)". Archived from the original on August 24, 2018. Retrieved Jan 2, 2022.
  9. ^ Dillow, Clay (December 9, 2010). "EU-Backed 'Electric Sail' Could Be the Fastest Man-Made Device Ever Built". Popular Science.
  10. ^ "Electric Solar Wind Sail EU FP7 project". www.electric-sailing.fi. Retrieved Jan 2, 2022.
  11. ^ "E-sail". www.electric-sailing.fi.
  12. ^ "EU project to build Electric Solar Wind Sail". Physorg.com. Retrieved 2014-01-12.
  13. ^ "Electric Solar Sail Concept Introduction". NASA. SpaceRef. 17 August 2015. Retrieved 2015-08-18.[permanent dead link]
  14. ^ HERTS program at NASA (2015)
  15. ^ "Aalto-1 is the first Finnish nanosatellite project". Aalto University. Archived from the original on 2014-12-23. Retrieved 2016-04-25.
  16. ^ "Tämä domain on varattu | aalto1.fi". www.aalto1.fi.
  17. ^ "Ensi yönä kello 00:51 taivaalla kiitää tähdenlento - Kyseessä on epäonnisen suomalaissatelliitin viimeinen matka". www.iltalehti.fi.
  18. ^ "EU project to build Electric Solar Wind Sail - Finnish Meteorological Institute". en.ilmatieteenlaitos.fi.
  19. ^ "uudised". ERR. Archived from the original on January 31, 2013.
  20. ^ "Aalto-1 satellite is ready for space". Aalto.fi. 2 March 2016. Retrieved 25 April 2015.
  21. ^ курс, The Baltic Course - Балтийский. "ESTCube-1 sends its last words: "Long live Estonia!"". The Baltic Course | Baltic States news & analytics. Retrieved 2016-04-24.
  22. ^ "List of units selected to the Centre of Excellence programme 2018–2025" (PDF). Archived from the original (PDF) on 2017-12-01. Retrieved 2017-11-23.
  23. ^ "News | Aalto University". www.aalto.fi. 15 December 2023.
  24. ^ "Electric Sails" Could Allow Us To Reach the Farthest Recesses of Space". Futurism. October 30, 2017. Retrieved May 23, 2023.
  25. ^ a b Ashley, Steven. "Sail E-way: Spacecraft Riding the Solar Wind on Electric-Field Sails Could Cruise at 180,000 km/h". Scientific American. Retrieved 2018-07-21.
  26. ^ Perakis, Nikolaos; Hein, Andreas M. (2016). "Combining magnetic and electric sails for interstellar deceleration". Acta Astronautica. 128: 13–20. arXiv:1603.03015. Bibcode:2016AcAau.128...13P. doi:10.1016/j.actaastro.2016.07.005. S2CID 17732634.
  27. ^ Janhunen, Pekka; Lebreton, Jean-Pierre; Merikallio, Sini; Paton, Mark; Mengali, Giovanni; Quarta, Alessandro A. (2014). "Fast E-sail Uranus entry probe mission". Planetary and Space Science. 104: 141–146. arXiv:1312.6554. Bibcode:2014P&SS..104..141J. doi:10.1016/j.pss.2014.08.004. S2CID 118329908.

Read other articles:

Pantai Maron (Jawa: ꦥꦱꦶꦱꦶꦂ​ꦩꦫꦺꦴꦤ꧀, translit. Pasisir Maron) yang terletak di sebelah barat Semarang, tepatnya di sekitar muara Sungai Silandak ini, bisa ditempuh dari dua tempat, yaitu dari Bandara Ahmad Yani atau dari Perumahan Graha Padma, Krapyak. Kira-kira berjarak 3 km dari jalan raya kita sudah bisa sampai di lokasi. Jika menggunakan kendaraan bisa ditempuh sekitar 10 menit. Namun jika ingin jalan kaki, dari ujung perumahan Graha Padma saja bisa m...

 

A Silent Voice beralih ke halaman ini. Untuk kegunaan lain, lihat Silent Voices (disambiguasi). The Shape of VoiceGambar sampul manga volume pertama yang diterbitkan di Jepang oleh Kodansha聲の形(Koe no Katachi)GenreDrama[1] MangaPengarangYoshitoki ŌimaPenerbitKodanshaPenerbit bahasa InggrisNA Kodansha USAPenerbit bahasa IndonesiaID M&C ComicsMajalahWeekly Shōnen MagazineDemografiShōnenTerbit7 Agustus 2013 – 19 November 2014Volume7 (Daftar volume) Film anime A Silent Voice...

 

Provinsi MakkahLetak Provinsi Makkah di Arab SaudiKota terbesarJeddahLuas • Luas daratan160.000+ km2 (Formatting error: invalid input when rounding sq mi) • Luas perairan0 km2 (0 sq mi)  0%Ketinggian1.000 m (3,000 ft)Ketinggian tertinggi1.936 m (6,352 ft)Ketinggian terendah0 m (0 ft)Populasi (2010) • Total8,557,766 • Peringkat1stZona waktuUTC+3 (AST) Letak Provinsi M...

دوري الدرجة الأولى الروماني 1939–40 تفاصيل الموسم دوري الدرجة الأولى الروماني  النسخة 28  البلد رومانيا  التاريخ بداية:27 أغسطس 1939  نهاية:9 يونيو 1940  المنظم اتحاد رومانيا لكرة القدم  البطل فينوس بوخارست  الهابطون نادي بترولول بلويشتي  مباريات ملعوبة 132   �...

 

Pancing1=Gagang/ joran2=Tali3=Pelampung4=Pemberat5=mata pancing Pancing atau Joran adalah salah satu alat penangkap ikan yang terdiri dari dua komponen utama, yaitu: tali (line) dan mata pancing (hook). Jumlah mata pancing berbeda-beda, yaitu mata pancing tunggal, ganda, bahkan sampai ribuan. Prinsip alat tangkap ini merangsang ikan dengan umpan alam atau buatan yang dikaitkan pada mata pancingnya. Alat ini pada dasarnya terdiri dari dua komponen utama yaitu tali dan mata pancing. Namun, sesu...

 

Cet article est une ébauche concernant la Chine. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Sūjiātún Qū 苏家屯区 Administration Pays Chine Province ou région autonome Liaoning Préfecture Shenyang Statut administratif District Code postal 110100[1] Indicatif +86 (0) Démographie 430 000 hab. (2010) Densité 550 hab./km2 Géographie Coordonnées 41° 39′ 00″ nord, ...

Oceanographic research expedition (1872–1876) HMS Challenger under sail, 1874 The Challenger expedition of 1872–1876 was a scientific programme that made many discoveries to lay the foundation of oceanography. The expedition was named after the naval vessel that undertook the trip, HMS Challenger. Maps of the Challenger's route. The expedition, initiated by William Benjamin Carpenter, was placed under the scientific supervision of Sir Charles Wyville Thomson—of the University ...

 

First US edition(publ. George H. Doran Company) Limbo is the first collection of short fiction by Aldous Huxley, published in 1920. The book consists of five short stories, a novelette and a play. Content Farcical History of Richard Greenow, novelette Happily Ever After Eupompus Gave Splendour to Art by Numbers Happy Families, play Cynthia The Bookshop The Death of Lully External links Limbo title listing at the Internet Speculative Fiction Database Limbo at Faded Page (Canada) Limbo public d...

 

Book by Joseph-Louis Lagrange Mécanique analytique 1811 copy of volume I of Mécanique AnalytiqueAuthorJoseph-Louis LagrangePublication date1811 Mécanique analytique (1788–89) is a two volume French treatise on analytical mechanics, written by Joseph-Louis Lagrange, and published 101 years after Isaac Newton's Philosophiæ Naturalis Principia Mathematica. Treatise It consolidated into one unified and harmonious system, the scattered developments of contributors such as Alexis Clairaut, Je...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Magic Cat Academy Publikasi30 Oktober 2016GenrePetualangan, StrategiKarakteristik teknisPlatformWindows Format kode Daftar 30 Portal permainan videoSunting di Wikidata • L • B • PWBantuan penggunaan templat ini Magic Cat Academy ad...

 

South Korean film director and screenwriter In this Korean name, the family name is Choi. Choi Dong-hoonBorn (1971-02-24) February 24, 1971 (age 53)Jeonju, North Jeolla Province, South KoreaEducationSogang University - B.A. in Korean Language and Literature Korean Academy of Film Arts - FilmmakingOccupation(s)Film director, screenwriterYears active1998–presentSpouseAhn Soo-hyun (film producer)Korean nameHangul최동훈Revised RomanizationChoi Dong-hunMcCune–ReischauerCh‘oe Ton...

 

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

American politician For the Irish cricketer, see Ross Adair. E. Ross AdairMember of the U.S. House of Representativesfrom Indiana's 4th districtIn officeJanuary 3, 1951 – January 3, 1971Preceded byEdward H. KruseSucceeded byJ. Edward RoushUnited States Ambassador to EthiopiaIn officeJuly 8, 1971 – February 12, 1974Preceded byWilliam O. HallSucceeded byArthur W. Hummel Jr. Personal detailsBorn(1907-12-14)December 14, 1907Albion, Indiana, USDiedMay 5, 1983(1983...

 

Independent trade association and charity BAFTA redirects here. For other uses, see BAFTA (disambiguation). For the most recent awards, see 77th British Academy Film Awards and 19th British Academy Games Awards. BAFTA (British Academy of Film and Television Arts)AbbreviationBAFTAFormation16 April 1947; 77 years ago (1947-04-16) (as British Film Academy)TypeTrade associationPurposeSupporting, promotes and developing the art of film, television and video gamesHeadquartersPicca...

 

LighthouseBooby Island Light Booby Island Lighthouse and one of the deteriorated cottagesLocationBooby Island, Queensland, AustraliaCoordinates10°36′15″S 141°54′40″E / 10.60423°S 141.91107°E / -10.60423; 141.91107TowerConstructed1890 Constructiontimber frame clad with galvanised iron[4]Automated1992 Height59 feet (18 m)[1]Shapeconical tower with balcony and lanternMarkingswhite (tower), red (dome) Heritagelisted on t...

District in Jiangsu, ChinaSuzhou Industrial Park 苏州工业园区DistrictThe park with the west bank of Jinji LakeSuzhou Industrial ParkCoordinates: 31°19′26″N 120°43′24″E / 31.3240°N 120.7233°E / 31.3240; 120.7233CountryChinaProvinceJiangsuPrefecture-level citySuzhouArea • Total278 km2 (107 sq mi)Population (2019) • Total807,800 • Density2,900/km2 (7,500/sq mi)Time zoneUTC+8 (China Standard)We...

 

مقر بنك المغرب، الرباط. يتكون النظام البنكي المغربي من مجموعة من المؤسسات المالية يشرف على تنظيمها واعتماداتها بنك المغرب، الذي يصنفها تحت تسمية «مؤسسات الائتمان والهيئات المعتبرة في حكمها» (بالفرنسية: Etablissements de crédit et organismes assimilés)‏ وتشمل البنوك ومؤسسات القروض والائتمان ...

 

هذه المقالات جزء من السلسلة المتعلقة في العجز والديون فيالولايات المتحدة الأمريكية الأبعاد الرئيسية الاقتصاد النفقات الميزانية الفيدرالية المركز المالي الميزانية العسكرية الدين الضرائب البطالة البرامج الرعاية الطبية البرامج الاجتماعية الضمان الاجتماعي قضايا معاصرة �...

Chronologies Données clés 1828 1829 1830  1831  1832 1833 1834Décennies :1800 1810 1820  1830  1840 1850 1860Siècles :XVIIe XVIIIe  XIXe  XXe XXIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap-Vert, République centrafricaine, Comores, République du Congo, République démocratique du Congo, Côte d'Ivoire, Djibouti, Égyp...

 

ShillongIbu KotaSearah jarum jam dari kiri atas ke kanan: Air Terjun Gajah, Ngarai Laitlum, Danau Ward, Panorama Bazar Polisi di Shillong, Katedral Maria Penolong Umat Kristiani, Pemandangan ShillongJulukan: Skotlandia dari TimurShillongLokasi Shillong di MeghalayaTampilkan peta MeghalayaShillongShillong (India)Tampilkan peta IndiaKoordinat: 25°34′56″N 91°53′40″E / 25.58222°N 91.89444°E / 25.58222; 91.89444Negara IndiaNegara BagianMeghalayaDistrik...