Dispersion (chemistry)

IUPAC definition

Material comprising more than one phase where at least one of the phases consists of finely divided phase domains, often in the colloidal size range, dispersed throughout a continuous phase.[1]

Note 1: Modification of definition in ref.[2]

A dispersion is a system in which distributed particles of one material are dispersed in a continuous phase of another material. The two phases may be in the same or different states of matter.

Dispersions are classified in a number of different ways, including how large the particles are in relation to the particles of the continuous phase, whether or not precipitation occurs, and the presence of Brownian motion. In general, dispersions of particles sufficiently large for sedimentation are called suspensions, while those of smaller particles are called colloids and solutions.

Structure and properties

Dispersions do not display any structure; i.e., the particles (or in case of emulsions: droplets) dispersed in the liquid or solid matrix (the "dispersion medium") are assumed to be statistically distributed. Therefore, for dispersions, usually percolation theory is assumed to appropriately describe their properties.

However, percolation theory can be applied only if the system it should describe is in or close to thermodynamic equilibrium. There are only very few studies about the structure of dispersions (emulsions), although they are plentiful in type and in use all over the world in innumerable applications (see below).

In the following, only such dispersions with a dispersed phase diameter of less than 1 μm will be discussed. To understand the formation and properties of such dispersions (incl emulsions), it must be considered that the dispersed phase exhibits a "surface", which is covered ("wet") by a different "surface" that, hence, are forming an interface (chemistry). Both surfaces have to be created (which requires a huge amount of energy), and the interfacial tension (difference of surface tension) is not compensating the energy input, if at all.

Experimental evidence suggests dispersions have a structure very much different from any kind of statistical distribution (which would be characteristics for a system in thermodynamic equilibrium), but in contrast display structures similar to self-organisation, which can be described by non-equilibrium thermodynamics.[3] This is the reason why some liquid dispersions turn to become gels or even solid at a concentration of a dispersed phase above a critical concentration (which is dependent on particle size and interfacial tension). Also, the sudden appearance of conductivity in a system of a dispersed conductive phase in an insulating matrix has been explained.

Dispersion description

Dispersion is a process by which (in the case of solid dispersing in a liquid) agglomerated particles are separated from each other, and a new interface between the inner surface of the liquid dispersion medium and the surface of the dispersed particles is generated. This process is facilitated by molecular diffusion and convection.[4]

With respect to molecular diffusion, dispersion occurs as a result of an unequal concentration of the introduced material throughout the bulk medium. When the dispersed material is first introduced into the bulk medium, the region at which it is introduced then has a higher concentration of that material than any other point in the bulk. This unequal distribution results in a concentration gradient that drives the dispersion of particles in the medium so that the concentration is constant across the entire bulk. With respect to convection, variations in velocity between flow paths in the bulk facilitate the distribution of the dispersed material into the medium.

Although both transport phenomena contribute to the dispersion of a material into the bulk, the mechanism of dispersion is primarily driven by convection in cases where there is significant turbulent flow in the bulk.[5] Diffusion is the dominant mechanism in the process of dispersion in cases of little to no turbulence in the bulk, where molecular diffusion is able to facilitate dispersion over a long period of time.[4] These phenomena are reflected in common real-world events. The molecules in a drop of food coloring added to water will eventually disperse throughout the entire medium, where the effects of molecular diffusion are more evident. However, stirring the mixture with a spoon will create turbulent flows in the water that accelerate the process of dispersion through convection-dominated dispersion.

Degree of dispersion

The term dispersion also refers to the physical property of the degree to which particles clump together into agglomerates or aggregates. While the two terms are often used interchangeably, according to ISO nanotechnology definitions, an agglomerate is a reversible collection of particles weakly bound, for example by van der Waals forces or physical entanglement, whereas an aggregate is composed of irreversibly bonded or fused particles, for example through covalent bonds.[6] A full quantification of dispersion would involve the size, shape, and number of particles in each agglomerate or aggregate, the strength of the interparticle forces, their overall structure, and their distribution within the system. However, the complexity is usually reduced by comparing the measured size distribution of "primary" particles to that of the agglomerates or aggregates.[7] When discussing suspensions of solid particles in liquid media, the zeta potential is most often used to quantify the degree of dispersion, with suspensions possessing a high absolute value of zeta potential being considered as well-dispersed.

Types of dispersions

A solution describes a homogeneous mixture where the dispersed particles will not settle if the solution is left undisturbed for a prolonged period of time.

A colloid is a heterogeneous mixture where the dispersed particles have at least in one direction a dimension roughly between 1 nm and 1 μm or that in a system discontinuities are found at distances of that order.[8]

A suspension is a heterogeneous dispersion of larger particles in a medium. Unlike solutions and colloids, if left undisturbed for a prolonged period of time, the suspended particles will settle out of the mixture.

Although suspensions are relatively simple to distinguish from solutions and colloids, it may be difficult to distinguish solutions from colloids since the particles dispersed in the medium may be too small to distinguish by the human eye. Instead, the Tyndall effect is used to distinguish solutions and colloids. Due to the various reported definitions of solutions, colloids, and suspensions provided in the literature, it is difficult to label each classification with a specific particle size range. The International Union of Pure and Applied Chemistry attempts to provide a standard nomenclature for colloids as particles in a size range having a dimension roughly between 1 nm and 1 μm.[9]

In addition to the classification by particle size, dispersions can also be labeled by the combination of the dispersed phase and the medium phase that the particles are suspended in. Aerosols are liquids dispersed in a gas, sols are solids in liquids, emulsions are liquids dispersed in liquids (more specifically a dispersion of two immiscible liquids), and gels are liquids dispersed in solids.

Components phases Homogeneous mixture Heterogeneous mixture
Dispersed
material
Continuous
medium
Solution:
Rayleigh scattering effect on visible light
Colloid (smaller particles):
Tyndall effect on visible light near the surface
Suspension (larger particles):
no significant effect on visible light
Gas Gas Gas mixture: air (oxygen and other gases in nitrogen) not possible
Liquid Aerosol: fog, mist, vapor, hair sprays, moisted air Aerosol: rain (also produces rainbows by refraction on water droplets)
Solid Solid aerosol: smoke, cloud, air particulates Solid aerosol: dust, sand storm, ice fog, pyroclastic flow
Gas Liquid Oxygen in water Foam: whipped cream, shaving cream Bubbling foam, boiling water, sodas and sparkling beverages
Liquid Alcoholic beverages (cocktails), sirups Emulsion: miniemulsion, microemulsion, milk, mayonnaise, hand cream, hydrated soap unstable emulsion of a soap bubble (at ambient temperature, with iridescent effect on light caused by evaporation of water; the suspension of liquids is still maintained by surfacic tension with the gas inside and outside the bubble and surfactants effects decreasing with evaporation; finally the bubble will pop when there's no more emulsion and the shearing effect of micelles will outweight the surface tension lost by evaporation of water out of them)
Solid Sugar in water Sol: pigmented ink, blood Mud (soil, clay or silt particles suspended in water, lahar, quicksand), wet plaster/cement/concrete, chalk powder suspended in water, lava flow (mix of melted and solid rock), melting ice creams
Gas Solid Hydrogen in metals Solid foam: aerogel, styrofoam, pumice
Liquid Amalgam (mercury in gold), hexane in paraffin wax Gel: agar, gelatin, silicagel, opal; frozen ice creams
Solid Alloys, plasticizers in plastics Solid sol: cranberry glass natural rocks, dried plaster/cement/concrete, frozen soap bubble

Examples of dispersions

Milk is a commonly cited example of an emulsion, a specific type of dispersion of one liquid into another liquid where the two liquids are immiscible. The fat molecules suspended in milk provide a mode of delivery of important fat-soluble vitamins and nutrients from the mother to newborn.[10] The mechanical, thermal, or enzymatic treatment of milk manipulates the integrity of these fat globules and results in a wide variety of dairy products.[11]

Oxide dispersion-strengthened alloy (ODS) is an example of oxide particle dispersion into a metal medium, which improves the high temperature tolerance of the material. Therefore these alloys have several applications in the nuclear energy industry, where materials must withstand extremely high temperatures to maintain operation.[12]

The degradation of coastal aquifers is a direct result of seawater intrusion into the and dispersion into the aquifer following excessive use of the aquifer. When an aquifer is depleted for human use, it is naturally replenished by groundwater moving in from other areas. In the case of coastal aquifers, the water supply is replenished both from the land boundary on one side and the sea boundary on the other side. After excessive discharge, saline water from the sea boundary will enter the aquifer and disperse in the freshwater medium, threatening the viability of the aquifer for human use.[13] Several different solutions to seawater intrusion in coastal aquifers have been proposed, including engineering methods of artificial recharge and implementing physical barriers at the sea boundary.[14]

Chemical dispersants are used in oil spills to mitigate the effects of the spill and promote the degradation of oil particles. The dispersants effectively isolate pools on oil sitting on the surface of the water into smaller droplets that disperse into the water, which lowers the overall concentration of oil in the water to prevent any further contamination or impact on marine biology and coastal wildlife.[15]

References

  1. ^ Slomkowski, Stanislaw; Alemán, José V.; Gilbert, Robert G.; Hess, Michael; Horie, Kazuyuki; Jones, Richard G.; Kubisa, Przemyslaw; Meisel, Ingrid; Mormann, Werner; Penczek, Stanisław; Stepto, Robert F. T. (2011). "Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011)" (PDF). Pure and Applied Chemistry. 83 (12): 2229–2259. doi:10.1351/PAC-REC-10-06-03. S2CID 96812603. Archived from the original (PDF) on 2013-10-20. Retrieved 2013-07-18.
  2. ^ Richard G. Jones; Edward S. Wilks; W. Val Metanomski; Jaroslav Kahovec; Michael Hess; Robert Stepto; Tatsuki Kitayama, eds. (2009). Compendium of Polymer Terminology and Nomenclature (IUPAC Recommendations 2008) (2nd ed.). RSC Publ. p. 464. ISBN 978-0-85404-491-7.
  3. ^ NALWA, H (2000), "Index for Volume 3", Handbook of Nanostructured Materials and Nanotechnology, Elsevier, pp. 585–591, doi:10.1016/b978-012513760-7/50068-x, ISBN 9780125137607, S2CID 183806092
  4. ^ a b Jacob., Bear (2013). Dynamics of Fluids in Porous Media. Dover Publications. ISBN 978-1306340533. OCLC 868271872.
  5. ^ Mauri, Roberto (May 1991). "Dispersion, convection, and reaction in porous media". Physics of Fluids A: Fluid Dynamics. 3 (5): 743–756. Bibcode:1991PhFlA...3..743M. doi:10.1063/1.858007. ISSN 0899-8213.
  6. ^ Stefaniak, Aleksandr B. (2017). "Principal Metrics and Instrumentation for Characterization of Engineered Nanomaterials". In Mansfield, Elisabeth; Kaiser, Debra L.; Fujita, Daisuke; Van de Voorde, Marcel (eds.). Metrology and Standardization of Nanotechnology. Wiley-VCH Verlag. pp. 151–174. doi:10.1002/9783527800308.ch8. ISBN 9783527800308.
  7. ^ Powers, Kevin W.; Palazuelos, Maria; Moudgil, Brij M.; Roberts, Stephen M. (2007-01-01). "Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies". Nanotoxicology. 1 (1): 42–51. doi:10.1080/17435390701314902. ISSN 1743-5390. S2CID 137174566.
  8. ^ IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook.
  9. ^ IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook.
  10. ^ Singh, Harjinder; Gallier, Sophie (July 2017). "Nature's complex emulsion: The fat globules of milk". Food Hydrocolloids. 68: 81–89. doi:10.1016/j.foodhyd.2016.10.011. ISSN 0268-005X.
  11. ^ Lopez, Christelle (2005-07-01). "Focus on the supramolecular structure of milk fat in dairy products" (PDF). Reproduction, Nutrition, Development. 45 (4): 497–511. doi:10.1051/rnd:2005034. ISSN 0926-5287. PMID 16045897.
  12. ^ Oak Ridge National Laboratory; United States; Department of Energy; United States; Department of Energy; Office of Scientific and Technical Information (1998). Development of oxide dispersion strengthened ferritic steels for fusion. Washington, D.C.: United States. Dept. of Energy. doi:10.2172/335389. OCLC 925467978. OSTI 335389.
  13. ^ Frind, Emil O. (June 1982). "Seawater intrusion in continuous coastal aquifer-aquitard systems". Advances in Water Resources. 5 (2): 89–97. Bibcode:1982AdWR....5...89F. doi:10.1016/0309-1708(82)90050-1. ISSN 0309-1708.
  14. ^ Luyun, Roger; Momii, Kazuro; Nakagawa, Kei (2011). "Effects of Recharge Wells and Flow Barriers on Seawater Intrusion". Groundwater. 49 (2): 239–249. doi:10.1111/j.1745-6584.2010.00719.x. ISSN 1745-6584. PMID 20533955. S2CID 205907329.
  15. ^ Lessard, R.R; DeMarco, G (Feb 2000). "The Significance of Oil Spill Dispersants". Spill Science & Technology Bulletin. 6 (1): 59–68. doi:10.1016/S1353-2561(99)00061-4.

Read other articles:

Peta wilayah Ventron. Ventron merupakan sebuah komune di departemen Vosges yang terletak pada sebelah timur laut Prancis. Lihat pula Komune di departemen Vosges Referensi INSEE lbsKomune di departemen Vosges Les Ableuvenettes Ahéville Aingeville Ainvelle Allarmont Ambacourt Ameuvelle Anglemont Anould Aouze Arches Archettes Aroffe Arrentès-de-Corcieux Attignéville Attigny Aulnois Aumontzey Autigny-la-Tour Autreville Autrey Auzainvilliers Avillers Avrainville Avranville Aydoilles Badménil-a...

 

Medial plantar arteryThe plantar arteries. Deep view. (Medial plantar artery visible at upper left.)The plantar arteries. Superficial view. (Medial plantar artery visible at center left.)DetailsSourcePosterior tibial arterySuppliesSoleIdentifiersLatinarteria plantaris medialisTA98A12.2.16.061TA24734FMA43925Anatomical terminology[edit on Wikidata] The medial plantar artery (internal plantar artery), much smaller than the lateral plantar artery, passes forward along the medial side of the f...

 

British Liberal prime minister (1809–1898) Gladstone and William Gladstone redirect here. For other uses, see Gladstone (disambiguation) and William Gladstone (disambiguation). The Right HonourableWilliam Ewart GladstoneFRS FSSGladstone in 1892Prime Minister of the United KingdomIn office15 August 1892 – 2 March 1894MonarchVictoriaPreceded byThe Marquess of SalisburySucceeded byThe Earl of RoseberyIn office1 February 1886 – 21 July 1886MonarchVictoriaPreceded byThe...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Koi wa Thrill, Shock, Suspense – news · newspapers · books · scholar · JSTOR (July 2020) (Learn how and when to remove this template message) 2000 single by Rina AiuchiKoi wa Thrill, Shock, SuspenseSingle by Rina Aiuchifrom the album Be Happy B-sideHikari Iro n...

 

  نيتيروي نيتيروي نيتيروي  خريطة الموقع تاريخ التأسيس 22 نوفمبر 1573  تقسيم إداري البلد البرازيل  [1][2] التقسيم الأعلى ريو دي جانيرو  خصائص جغرافية إحداثيات 22°53′00″S 43°06′13″W / 22.883333333333°S 43.103611111111°W / -22.883333333333; -43.103611111111  [3] المساحة 133.916 كيل...

 

Avenay-Val-d'OrcomuneAvenay-Val-d'Or – VedutaVista del villaggio venendo dal Bisseuil LocalizzazioneStato Francia RegioneGrand Est Dipartimento Marna ArrondissementÉpernay CantoneÉpernay-1 TerritorioCoordinate49°04′N 4°03′E / 49.066667°N 4.05°E49.066667; 4.05 (Avenay-Val-d'Or)Coordinate: 49°04′N 4°03′E / 49.066667°N 4.05°E49.066667; 4.05 (Avenay-Val-d'Or) Superficie12,54 km² Abitanti935[1] (2009) Densità74,56 ab....

City in Mureș County, Romania This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Târgu Mureș – news · newspapers · books · scholar · JSTOR (December 2016) ...

 

这是马来族人名,“莫哈末”是父名,不是姓氏,提及此人时应以其自身的名“马哈迪”为主。阿拉伯语“本”(bin)或“伊本”(ibn)、“宾蒂”(binti),意为后者是前者“某某之子”或“某某之女”。 尊敬的 敦马哈迪·莫哈末Mahathir bin Mohamad博士DK SMN SPMJ SSAP DGSM SPNS DUPN SPDK2018年的马哈迪馬來西亞第4、7任首相任期2018年5月10日—2020年3月1日辭職看守:2020年2月24日-2020�...

 

2013 single by Ty Dolla $ign featuring B.o.BParanoidSingle by Ty Dolla $ign featuring B.o.Bfrom the album Beach House EP ReleasedSeptember 10, 2013 (2013-09-10)Recorded2013Genre Hip hop snap[1] Length3:36Label Taylor Gang Atlantic Pushaz Ink Songwriter(s) Tyrone Griffin Bobby Simmons Dijon McFarlane Producer(s)DJ MustardTy Dolla $ign singles chronology Irie (2013) Paranoid (2013) Or Nah (2014) B.o.B singles chronology Ready(2013) Paranoid(2013) John Doe(2013) M...

密西西比州 哥伦布城市綽號:Possum Town哥伦布位于密西西比州的位置坐标:33°30′06″N 88°24′54″W / 33.501666666667°N 88.415°W / 33.501666666667; -88.415国家 美國州密西西比州县朗兹县始建于1821年政府 • 市长罗伯特·史密斯 (民主党)面积 • 总计22.3 平方英里(57.8 平方公里) • 陸地21.4 平方英里(55.5 平方公里) • ...

 

American Four-star admiral Roy Lee JohnsonAdm. Roy Lee Johnson, c. 1965Born(1906-03-18)March 18, 1906Eunice, Louisiana, USDiedMarch 20, 1999(1999-03-20) (aged 93)Virginia Beach, Virginia, USAllegianceUnited StatesService/branchUnited States NavyYears of service1929–1967RankAdmiralCommands heldPacific FleetSeventh FleetCarrier Division FourCarrier Air Group TwoUSS Badoeng Strait (CVE-116)USS Forrestal (CVA-59)Battles/warsWorld War II Philippines Campaign Bat...

 

Bremsstrahlung dihasilkan oleh elektron berenergi tinggi yang dibelokkan dalam medan listrik dari sebuah inti atom. Bremsstrahlung (bahasa Indonesia: radiasi pengereman, dari bahasa Jerman) adalah radiasi elektromagnetik yang dipancarkan oleh partikel bermuatan (biasanya elektron) berkecepatan tinggi ketika ia kehilangan energi dan dibelokkan akibat berada di dekat inti atom. Partikel tersebut kehilangan energi kinetik yang diubah ke dalam bentuk radiasi, yaitu foton, sehingga hukum kekekalan...

第三十一届夏季奧林匹克運動會男子100公斤以上級柔道比賽比賽場館卡里奧卡體育館2日期8月12日参赛选手31位選手,來自31個國家和地區奖牌获得者01 ! 特迪·里內  法国02 ! 原澤久喜  日本03 ! 拉斐爾·席爾瓦  巴西03 ! 歐爾·沙森  以色列← 20122020 → 2016年夏季奧林匹克運動會柔道比賽 男子 女子   60公斤級     48公斤級   66�...

 

  提示:此条目页的主题不是中國—剛果共和國關係。   關於中華民國與「剛」字國家的外交關係,詳見中剛關係 (消歧義)。 中華民國—剛果共和國關係 中華民國 刚果共和国 中華民國—剛果共和國關係(法語:Relations République du Congo–République de Chine),是指中華民國與剛果共和國(通稱剛果、剛果(布))之間的關係。兩國於1960-1964年有官方外交關係,�...

 

2014 studio album by AnittaRitmo PerfeitoStudio album by AnittaReleased3 June 2014 (2014-06-03)Recorded2014StudioU.M. Music (Rio de Janeiro, Brazil)Genre Pop electropop R&B Length30:55LanguagePortuguese, SpanishProducer Toninho Aguiar Head Media Rafael Castilhol Danilo Sinna Anitta chronology Anitta(2013) Ritmo Perfeito(2014) Meu Lugar(2014) Singles from Ritmo Perfeito CobertorReleased: 24 May 2014 Na BatidaReleased: 29 July 2014 Ritmo PerfeitoReleased: 10 December ...

令制国一覧 > 西海道 > 大隅国 > 熊毛郡 日本 > 九州地方 > 鹿児島県 > 熊毛郡 鹿児島県熊毛郡の位置(1.中種子町 2.南種子町 3.屋久島町 薄緑:後に他郡から編入した区域) 熊毛郡(くまげぐん)は、鹿児島県(大隅国)にある郡。 人口23,125人、面積787.33km²、人口密度29.4人/km²。(2024年8月1日、推計人口) 以下の3町を含む。 中種...

 

  ميّز عن سير مزامنة.سير مسننالنوع حزام تعديل - تعديل مصدري - تعديل ويكي بيانات سير مسنن السِّير المُسَنّن (جمع: سُيُور مسننة) هو سير مرن ذو أسنان مصبوبة على سطحه الداخلي. تُصمم السيور المُسننة بحيث تُشغل فوق المسننات أو المُضرَّسات المطابقة. تُستخدم السيور المسننة في م�...

 

Ne doit pas être confondu avec Château de Grignon. Château de Grignan Façade Renaissance dite François Ier. Période ou style Classique / Renaissance Début construction XIIe siècle Propriétaire actuel Conseil départemental de la Drôme Protection  Inscrit MH (1947, 1987) Classé MH (1993)[1] Coordonnées 44° 25′ 07″ nord, 4° 54′ 33″ est Pays France Région historique Tricastin Département Drôme Commune Grignan Géolocalis...

日本放送労働組合(日放労)Japan broadcasting labour Union設立年月日 1948年(昭和23年)3月2日組織形態 企業別労働組合組合員数 約8,500名国籍 日本本部所在地 〒150-8001東京都渋谷区神南2-2-1北緯35度39分57秒 東経139度41分44.4秒 / 北緯35.66583度 東経139.695667度 / 35.66583; 139.695667法人番号 5011005000962 加盟組織 日本労働組合総連合会ユニ・グローバル・ユニオン公式サ�...

 

竹下豊次 竹下 豊次(たけした とよじ、1887年(明治20年)2月2日 – 1978年(昭和53年)4月25日[1])は、大正から昭和期の官僚、政治家。貴族院多額納税者議員、参議院議員(緑風会)。 経歴 宮崎県、のちの南那珂郡福島町[2](現串間市)出身。1911年(明治44年)、東京帝国大学法科大学独法科を卒業し、大学院に学んだ[3]。1912年(大正元年)高等試験�...