Dichotomy

In this image, the universal set U (the entire rectangle) is dichotomized into the two sets A (in pink) and its complement Ac (in grey).

A dichotomy /dˈkɒtəmi/ is a partition of a whole (or a set) into two parts (subsets). In other words, this couple of parts must be

If there is a concept A, and it is split into parts B and not-B, then the parts form a dichotomy: they are mutually exclusive, since no part of B is contained in not-B and vice versa, and they are jointly exhaustive, since they cover all of A, and together again give A.

Such a partition is also frequently called a bipartition. The two parts thus formed are complements. In logic, the partitions are opposites if there exists a proposition such that it holds over one and not the other. Treating continuous variables or multicategorical variables as binary variables is called dichotomization. The discretization error inherent in dichotomization is temporarily ignored for modeling purposes.

Etymology

The term dichotomy is from the Greek language Greek: διχοτομία dichotomía "dividing in two" from δίχα dícha "in two, asunder" and τομή tomḗ "a cutting, incision".

Usage and examples

  • In set theory, a dichotomous relation R is such that either aRb, bRa, but not both.[1]
  • A false dichotomy is an informal fallacy consisting of a supposed dichotomy which fails one or both of the conditions: it is not jointly exhaustive and/or not mutually exclusive. In its most common form, two entities are presented as if they are exhaustive, when in fact other alternatives are possible. In some cases, they may be presented as if they are mutually exclusive although there is a broad middle ground [2] (see also undistributed middle).
  • One type of dichotomy is dichotomous classification – classifying objects by recursively splitting them into two groups. As Lewis Carroll explains, "After dividing a Class, by the Process of Dichotomy, into two smaller Classes, we may sub-divide each of these into two still smaller Classes; and this Process may be repeated over and over again, the number of Classes being doubled at each repetition. For example, we may divide "books" into "old" and "new" (i.e. "not-old"): we may then sub-divide each of these into "English" and "foreign" (i.e. "not-English"), thus getting four Classes."[3]
  • In statistics, dichotomous data may only exist at first two levels of measurement, namely at the nominal level of measurement (such as "British" vs "American" when measuring nationality) and at the ordinal level of measurement (such as "tall" vs "short", when measuring height). A variable measured dichotomously is called a dummy variable.
  • In computer science, more specifically in programming-language engineering, dichotomies are fundamental dualities in a language's design. For instance, C++ has a dichotomy in its memory model (heap versus stack), whereas Java has a dichotomy in its type system (references versus primitive data types).
  • In astronomy dichotomy is when the Moon or an inferior planet is exactly half-lit as viewed from Earth. For the Moon, this occurs slightly before one quarter Moon orbit and slightly after the third quarter of the Moon's orbit at 89.85° and 270.15°, respectively. (This is not to be confused with quadrature which is when the Sun-Earth-Moon/superior planet angle is 90°.)
  • In botany, branching may be dichotomous or axillary. In dichotomous branching, the branches form as a result of an equal division of a terminal bud (i.e., a bud formed at the apex of a stem) into two equal branches. This also applies to root systems as well.[4][5]

See also

References

  1. ^ Komjath, Peter; Totik, Vilmos (2006). Problems and Theorems in Classical Set Theory. Springer Science & Business Media. p. 497. ISBN 978-0-387-30293-5.
  2. ^ Baronett, Stan (2013). Logic. Oxford University Press. p. 134.
  3. ^ Carroll, Lewis (1897), Symbolic Logic, vol. 1.3.2 (4th ed.), London: Macmillan and Co., Ltd.
  4. ^ Hetherington, Alexander J.; Berry, Christopher M.; Dolan, Liam (2020). "Multiple origins of dichotomous and lateral branching during root evolution" (PDF). Nature Plants. 6 (5): 454–459. doi:10.1038/s41477-020-0646-y. PMID 32366983. S2CID 218495278.
  5. ^ Gola, Edyta M. (6 June 2014). "Dichotomous branching: the plant form and integrity upon the apical meristem bifurcation". Frontiers in Plant Science. 5: 263. doi:10.3389/fpls.2014.00263. PMC 4047680. PMID 24936206.

Read other articles:

Pour les articles homonymes, voir Waterloo (homonymie). Waterloo Église Saint-Joseph Héraldique Drapeau Administration Pays Belgique Région  Région wallonne Communauté  Communauté française Province  Province du Brabant wallon Arrondissement Nivelles Bourgmestre Florence Reuter (MR) Majorité MR SiègesMREcoloDéFIMVW 3124511 Section Code postal Waterloo 1410 Code INS 25110 Zone téléphonique 02 Démographie Gentilé Waterlootois(e) Population– Hommes– FemmesDensit�...

У Вікіпедії є статті про інші географічні об’єкти з назвою Форд. Місто Фордангл. Ford Координати 45°09′41″ пн. ш. 90°45′40″ зх. д. / 45.16138888891677539° пн. ш. 90.76111111113878849° зх. д. / 45.16138888891677539; -90.76111111113878849Координати: 45°09′41″ пн. ш. 90°45′40″ зх. д.þ...

(The) Wild Wild West kan verwijzen naar: In film en televisie: The Wild Wild West (televisieserie), een televisieserie die liep van 1965 tot 1969 Wild Wild West (film), een film uit 1999 gebaseerd op deze serie. The Wild Wild West (film), een film uit 1921. In muziek: Wild Wild West (Kool Moe Dee), een single uit 1988 van Koel Moe Dee Wild Wild West (Will Smith), een single uit 1999 Wild, Wild West (Escape Club), een single uit 1988 van de Escape Club Wild Wild West (album), een album uit 198...

حركة انتصار الحريات الديمقراطية   البلد الجزائر (المستعمرة الفرنسية)  التأسيس تاريخ التأسيس 2 نوفمبر 1946 المؤسسون مصالي الحاج تاريخ الحل 5 نوفمبر 1954 تعديل مصدري - تعديل   نشأت حركة انتصار الحريات الديمقراطية بعد مجازر 8 مايو 1945 وإطلاق سراح مصالي الحاج في2 نوفمبر 1946، عقد

English lawyer and politician (1731-1783) The Right HonourableThe Lord AshburtonPCJohn Dunning (later 1st Baron Ashburton), detail from an engraving of a 1782 group portrait by Sir Joshua ReynoldsChancellor of the Duchy of LancasterIn office1782–1783Preceded byThe Earl of ClarendonSucceeded byThe Earl of DerbySolicitor General for England and WalesIn office1768–1770Preceded byEdward WillesSucceeded byEdward Thurlow Personal detailsBorn18 October 1731Died18 August 1783 (aged 51) John Dunni...

Penembakan Siam ParagonRekaman CCTV yang menunjukkan tersangka pria bersenjata ditahan oleh polisiLokasiSiam Paragon991 Rama I Road, Pathum WanBangkok 10330, ThailandTanggal03 Oktober 2023 (2023-10-03) 4:10 PM – 5:10 PM (UTC+7)Jenis seranganPenembakan massalSenjataConverted 9mm pistol peluru hampa[1] (model Glock 19)[2]Korban tewas3[3][4]Korban luka4[5] Pemandangan luar Siam Paragon, lokasi kejadian Pada tanggal 3 Oktober 2023, sebuah penemb...

For Nelson Bay in Sydney, see Bronte Beach. For the locality in Tasmania, see Nelson Bay, Tasmania. Suburb of Port Stephens Council, New South Wales, AustraliaNelson BayNew South WalesLooking south from Tomaree HeadlandNelson BayCoordinates32°42′54″S 152°9′4″E / 32.71500°S 152.15111°E / -32.71500; 152.15111Population6,141 (2021 census)[1] • Density393.65/km2 (1,019.5/sq mi) [Note 1]Postcode(s)2315Area15.6 km2 (6.0&...

17th century battle in Assam, India This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's notability guideline for events. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be sho...

توتا دي دانان كما هو مبين في رسم جون دنكان فرسان من عيون الفجيرة (1911)سلسلة من المقالات حولالأساطير الكلتية الأيرلندية الإسكتلندية الويلزية البرتونية الكورنشية المفاهيم الدين الآلهة (قائمة) الأرواحية توتا دي دانان Fomhoraigh فلكلور وأساطير هبرديسية Mythological Cycle Ulster Cycle Fianna Cy...

Map of countries with proven oil reserves - according to U.S. EIA (start of 2017) Trends in proven oil reserves in top five countries, 1980–2013 (data from US Energy Information Administration) A map of world oil reserves according to OPEC, January 2014 Proven oil reserves are those quantities of petroleum which, by analysis of geological and engineering data, can be estimated, with a high degree of confidence, to be commercially recoverable from a given date forward from known reservoirs a...

School in Fairfield, Maine, United StatesLawrence High SchoolMain entrance in 2003Address9 School StreetFairfield, MaineUnited StatesCoordinates44°35′20″N 69°36′18″W / 44.589°N 69.605°W / 44.589; -69.605InformationSchool districtMSAD #49PrincipalDan Bowers[1]Enrollment652 (2016-17)[2]Color(s)Blue & Gray     MascotBulldogYearbookLawrence LyreFeeder schoolsLawrence Junior HighWebsitewww.msad49.org/o/lhs Lawrence High School ...

A major contributor to this article appears to have a close connection with its subject. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. Please discuss further on the talk page. (September 2016) (Learn how and when to remove this template message) 2016 Indian filmKaadu Pookkunna NeramOfficial posterDirected byDr. BijuWritten byDr. BijuProduced bySophia PaulStarringIndrajith SukumaranRima KallingalPrakash BareIndransIrshadKrishnan Balakri...

2018 Indian filmNaamTheatrical release posterDirected byJoshy Thomas PallickalStory byJoshy Thomas PallickalProduced byPrema Antony Thekkek & Joshy Thomas PallickalStarringShabareesh Varma Rahul Madhav Saiju Kurup Tony Luke Renji Panicker Antony Thekkek Aditi Ravi Noby Marcose Gayathri SureshCinematographySudhi & KarthikMusic byAshwin Sivadas & Sandeep MohanProductioncompanyJTP FilmsRelease date 11 May 2018 (2018-05-11) CountryIndiaLanguageMalayalam Naam (English: U...

2023 crime fiction novel by J. K. Rowling The Running Grave UK first edition coverAuthorRobert Galbraith (J. K. Rowling)CountryUnited KingdomLanguageEnglishGenreCrime fictionPublisherSphere BooksPublication date26 September 2023Pages960ISBN978-0-3165-7210-1Preceded byThe Ink Black Heart  The Running Grave is a crime fiction novel written by J. K. Rowling, and published under the pseudonym Robert Galbraith. It was published 26 September 2023. It is the seventh novel in the Cormoran S...

Economic development agency Beijing E-TownAgency overviewFormed1994 (1994)Parent departmentMunicipal government of BeijingWebsitewww.bdainvest.org Beijing E-Town is an economic development agency of the Beijing municipal government that traces its origins to 1994 when the Beijing government chartered an entity to help foster high tech manufacturing in Beijing.[1] E-Town supports high-tech manufacturing by multiple means. When it was established, E-Town's responsibility was to ope...

此條目没有列出任何参考或来源。 (2014年1月4日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 千秋太后천추태후编剧孫永穆、李相民、姜英蘭导演申昌碩、黃仁赫主演蔡时那金锡勋崔宰诚李德华制作国家/地区 韩国语言韓語集数78播出信息 首播频道KBS播出国家/地区 韩国播出日期2009年1�...

Shopping mall in Tainan City, TaiwanMitsui Outlet Park TainanMitsui Outlet Park 台南LocationGueiren District, Tainan City, TaiwanCoordinates22°55′30″N 120°17′14″E / 22.9251°N 120.2873°E / 22.9251; 120.2873Opening dateFebruary 25, 2022DeveloperSannan Outlets Co., Ltd.ManagementMitsui & Co. Taiwan Ltd.OwnerMitsui & Co. Taiwan Ltd.No. of stores and services220Total retail floor area84,000 m2 (900,000 sq ft)Public transit accessTainan H...

Hospital in EnglandSouth Ockendon HospitalOne of the few remaining hospital buildings (now used as a community club)Shown in EssexGeographyLocationSouth Ockendon, Essex, England, United KingdomCoordinates51°31′06″N 0°18′05″E / 51.5182°N 0.3013°E / 51.5182; 0.3013OrganisationCare systemPublic NHSTypeMental healthHistoryOpened1932Closed1994LinksListsHospitals in England South Ockendon Hospital (known locally as The Colony) was a hospital for patients with sev...

1 Raja-raja 11Kitab Raja-raja (Kitab 1 & 2 Raja-raja) lengkap pada Kodeks Leningrad, dibuat tahun 1008.KitabKitab 1 Raja-rajaKategoriNevi'imBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen11← pasal 10 pasal 12 → 1 Raja-raja 11 (atau I Raja-raja 11, disingkat 1Raj 11) adalah bagian dari Kitab 1 Raja-raja dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen. Dalam Alkitab Ibrani termasuk Nabi-nabi Awal atau Nevi'im Rishonim [נביאים ראשונים] dala...

1974 song by David BowieFuture LegendSong by David Bowiefrom the album Diamond Dogs Released24 May 1974[1]RecordedEarly 1974StudioOlympic, LondonGenreGlam rockLength1:10LabelRCASongwriter(s)David Bowie Bewitched, Bothered and Bewildered by Richard RodgersProducer(s)David Bowie Future Legend is the opening track of David Bowie's 1974 album Diamond Dogs. Its spoken narrative introduces the album's setting in a glitter apocalypse.[2] Music and lyrics Barely a minute in length, Fu...