Descent (mathematics)

In mathematics, the idea of descent extends the intuitive idea of 'gluing' in topology. Since the topologists' glue is the use of equivalence relations on topological spaces, the theory starts with some ideas on identification.

Descent of vector bundles

The case of the construction of vector bundles from data on a disjoint union of topological spaces is a straightforward place to start.

Suppose X is a topological space covered by open sets Xi. Let Y be the disjoint union of the Xi, so that there is a natural mapping

We think of Y as 'above' X, with the Xi projection 'down' onto X. With this language, descent implies a vector bundle on Y (so, a bundle given on each Xi), and our concern is to 'glue' those bundles Vi, to make a single bundle V on X. What we mean is that V should, when restricted to Xi, give back Vi, up to a bundle isomorphism.

The data needed is then this: on each overlap

intersection of Xi and Xj, we'll require mappings

to use to identify Vi and Vj there, fiber by fiber. Further the fij must satisfy conditions based on the reflexive, symmetric and transitive properties of an equivalence relation (gluing conditions). For example, the composition

for transitivity (and choosing apt notation). The fii should be identity maps and hence symmetry becomes (so that it is fiberwise an isomorphism).

These are indeed standard conditions in fiber bundle theory (see transition map). One important application to note is change of fiber: if the fij are all you need to make a bundle, then there are many ways to make an associated bundle. That is, we can take essentially same fij, acting on various fibers.

Another major point is the relation with the chain rule: the discussion of the way there of constructing tensor fields can be summed up as 'once you learn to descend the tangent bundle, for which transitivity is the Jacobian chain rule, the rest is just 'naturality of tensor constructions'.

To move closer towards the abstract theory we need to interpret the disjoint union of the

now as

the fiber product (here an equalizer) of two copies of the projection p. The bundles on the Xij that we must control are V′ and V", the pullbacks to the fiber of V via the two different projection maps to X.

Therefore, by going to a more abstract level one can eliminate the combinatorial side (that is, leave out the indices) and get something that makes sense for p not of the special form of covering with which we began. This then allows a category theory approach: what remains to do is to re-express the gluing conditions.

History

The ideas were developed in the period 1955–1965 (which was roughly the time at which the requirements of algebraic topology were met but those of algebraic geometry were not). From the point of view of abstract category theory the work of comonads of Beck was a summation of those ideas; see Beck's monadicity theorem.

The difficulties of algebraic geometry with passage to the quotient are acute. The urgency (to put it that way) of the problem for the geometers accounts for the title of the 1959 Grothendieck seminar TDTE on theorems of descent and techniques of existence (see FGA) connecting the descent question with the representable functor question in algebraic geometry in general, and the moduli problem in particular.

Fully faithful descent

Let . Each sheaf F on X gives rise to a descent datum

,

where satisfies the cocycle condition[1]

.

The fully faithful descent says: The functor is fully faithful. Descent theory tells conditions for which there is a fully faithful descent, and when this functor is an equivalence of categories.

See also

References

  1. ^ Descent data for quasi-coherent sheaves, Stacks Project
  • SGA 1, Ch VIII – this is the main reference
  • Siegfried Bosch; Werner Lütkebohmert; Michel Raynaud (1990). Néron Models. Ergebnisse der Mathematik und Ihrer Grenzgebiete. 3. Folge. Vol. 21. Springer-Verlag. ISBN 3540505873. A chapter on the descent theory is more accessible than SGA.
  • Pedicchio, Maria Cristina; Tholen, Walter, eds. (2004). Categorical foundations. Special topics in order, topology, algebra, and sheaf theory. Encyclopedia of Mathematics and Its Applications. Vol. 97. Cambridge: Cambridge University Press. ISBN 0-521-83414-7. Zbl 1034.18001.

Further reading

Other possible sources include:

Read other articles:

Seorang wanita berkayak di laguna Berkayak di riam jeram Berkayak adalah penggunaan kayak untuk bergerak di atas air. Kayak dibedakan dari kano berdasarkan posisi duduk pendayung dan jumlah bilah pada dayung. Kayak adalah perahu yang rendah di atas air, seperti kano, di mana pendayungnya duduk menghadap ke depan, dengan kaki di depan, menggunakan dayung berbilah ganda untuk menarik dari depan ke belakang di satu sisi dan kemudian sisi lainnya secara bergantian.[1] Sebagian besar kayak...

 

Ajah BerdosaIklan koranSutradaraWu TsunPemeran M. Arief S. Waldy Elly Joenara Soetijem SinematograferChok Chin HsienPerusahaanproduksiStar FilmTanggal rilis 1941 (1941) (Hindia Belanda) NegaraHindia BelandaBahasaMelayu Ajah Berdosa adalah film hilang Hindia Belanda (sekarang Indonesia) tahun 1941 yang disutradarai Wu Tsun untuk Star Film. Film ini dibintangi M. Arief, S. Waldy, Elly Joenara, dan Soetijem. Film ini mengisahkan kehidupan seorang pemuda desa bernama Mardiman selama bebe...

 

2017 filmThe Venerable W.Film posterFrenchLe vénérable W. Directed byBarbet SchroederProduced byMargaret MenegozMusic byJorge ArriagadaProductioncompanyLes Films du LosangeDistributed byLes Films du LosangeRelease date May 2017 (2017-05) (Cannes) Running time100 minutesCountriesFrance, SwitzerlandLanguagesBurmese, English, French, Spanish The Venerable W. (French: Le vénérable W.) is a 2016 documentary film by Swiss director Barbet Schroeder. It is his last film in his Trilo...

Apple Silicon è una serie di system-on-a-chip (SoC) progettati da Apple per dispositivi di propria produzione: iPhone, iPad, iPod touch, Apple Watch, Apple TV, HomePod e, dal 2020, anche per Mac. I SoC Apple contengono al loro interno una serie di componenti a cui viene attribuito uno scopo specifico: CPU: il coprocessore che si occupa dell'elaborazione seriale sequenziale delle istruzioni aritmetiche e di calcolo; GPU: il coprocessore che si occupa dell'elaborazione parallela delle istruzio...

 

Untuk kegunaan lain, lihat Twivortiare. TwivortiarePoster filmSutradaraBenni SetiawanProduserManoj PunjabiSkenario Alim Sudio Benni Setiawan BerdasarkanTwivortiareoleh Ika NatassaPemeran Reza Rahadian Raihaanun Arifin Putra Denny Sumargo Citra Kirana Anggika Bolsterli Dimas Aditya Boris Bokir Penata musikTya SubiaktoSinematograferYudi DatauPenyunting Cesa David Luckmansyah Apriady Fathullah Sikumbang PerusahaanproduksiMD PicturesDistributor MD Pictures Disney+ Hotstar Viu Tanggal rilis ...

 

Ираклеониты — ученики гностика Ираклеона (II век). Упоминаются как особая секта Епифанием и Августином; при крещении и миропомазании они соблюдали обряд помазания елеем и при этом произносили воззвания на арамейском языке, которые должны были освободить душу от власт...

Type of baseball where players are paid This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Professional baseball – news · newspapers · books · scholar · JSTOR (September 2011) (Learn how and when to remove this message) Sapporo Dome in Japan serves as home ballpark for the Hokkaido Nippon-Ham Fighters, a profes...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Sekolah Lentera HarapanInformasiDidirikan6 Februari 2008JenisSwastaAkreditasiARentang kelasSD, SMP, SMAKurikulumKurikulum 2013AlamatLokasiJl. Arah Awa'ai Km. 12,5 Afia, Gunungsitoli Utara, Gunungsitoli, Sumatera Utara, IndonesiaSitus web[1] [2]Mot...

 

British racing driver This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this message) This biography of a living person needs additional citations for verif...

British politician (born 1944) Not to be confused with Margaret Hodges. The Right HonourableDame Margaret HodgeOfficial portrait, 2020Chair of the Public Accounts CommitteeIn office10 June 2010 – 30 March 2015Preceded byEdward LeighSucceeded byMeg HillierMinister of State for Culture and TourismIn office22 September 2009 – 11 May 2010Prime MinisterGordon BrownPreceded byBarbara FollettSucceeded byJohn PenroseIn office27 June 2007 – 3 October 2008Prime Minister...

 

Religion in Gabon Islam by countryWorld percentage of Muslims by country Africa Algeria Angola Benin Botswana Burkina Faso Burundi Cameroon Cape Verde Central African Republic Chad Comoros Democratic Republic of the Congo Republic of the Congo Djibouti Egypt Equatorial Guinea Eritrea Eswatini Ethiopia Gabon Gambia Ghana Guinea Guinea-Bissau Ivory Coast Kenya Lesotho Liberia Libya Madagascar Malawi Mali Mauritania Mauritius Mayotte Morocco Western Sahara Mozambique Namibia Niger Nigeria Réuni...

 

Ten artykuł dotyczy polskiej partii politycznej. Zobacz też: inne znaczenia. Polska Partia Socjalistyczna Państwo  Polska Skrót PPS Przewodniczący Wojciech Konieczny Data założenia 17 listopada 1892 (1948–1990 na emigracji) Adres siedziby al. Niepodległości 161 lok. 2,02-555 Warszawa Ideologia polityczna socjalizm demokratyczny, feminizm, antyklerykalizm Poglądy gospodarcze socjalizm Członkostwomiędzynarodowe II Międzynarodówka(do 1916) Młodzieżówk...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of edible cacti – news · newspapers · books · scholar · JSTOR (October 2014) (Learn how and when to r...

 

Chilean politician Cecilia PérezMinister of PlanningIn office7 January 2002 – 3 March 2003PresidentRicardo LagosPreceded byAlejandra KraussSucceeded byAndrés Palma Irarrázaval Personal detailsBorn (1966-09-08) 8 September 1966 (age 57)Santiago, ChilePolitical partyNoneAlma materUniversity of Concepción (BA)University of Bordeaux (MA)ProfessionSocial worker Norma Cecilia Pérez Díaz (born 8 September 1966) is a Chilean social worker who served as minister.[1] Refer...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يوليو 2022) ستير زي إل إم تور 2017 تفاصيل السباقسلسلة31. زي إل إم تورمنافسةطواف أوروبا للدراجات 2017 2.1‏مراحل5التواريخ14 ...

2023 Indian comedy drama film PartnerTheatrical release posterDirected byManoj DamodharanWritten byManoj DamodharanProduced byGoli Surya PrakashStarring Aadhi Pinisetty Hansika Motwani Yogi Babu CinematographyShabeer AhammedEdited byPradeep E. RagavMusic bySanthosh DhayanidhiProductioncompanyRoyal Fortuna CreationsRelease date 25 August 2023 (2023-08-25) CountryIndiaLanguageTamil Partner is a 2023 Indian Tamil-language science-fiction crime comedy film written and directed by M...

 

Ricardo Ezzati AndrelloS.D.B.Kardinal, Uskup Agung Santiago de ChileGerejaRoman CatholicKeuskupan agungSantiago de ChileAwal masa jabatan15 Desember 2010Masa jabatan berakhir23 Maret 2019PendahuluFrancisco Javier Errázuriz OssaJabatan lainKardinal-Imam Santissimo Redentore a ValmelainaImamatTahbisan imam18 Maret 1970Tahbisan uskup8 September 1996Pelantikan kardinal22 Februari 2014oleh Paus FransiskusPeringkatKardinal-ImamInformasi pribadiLahir07 Januari 1942 (umur 82)Campiglia dei Beric...

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: 1844 in Ireland – news · newspapers · books · scholar · JSTOR (June 2018) List of events ← 1843 1842 1841 1840 1839 1844 in Ireland → 1845 1846 1847 1848 1849 Centuries: 17th 18th 19th 20th 21st Decades: 1820s 1830s 1840s 1850s 1860s See a...

1935 film by James Tinling Charlie Chan in ShanghaiDirected byJames TinlingWritten byEdward T. Lowe Jr.Produced byJohn StoneStarringWarner OlandCinematographyBarney McGillProductioncompanyFox Film CorporationDistributed by20th Century FoxRelease date October 14, 1935 (1935-10-14) Running time71 minutesCountryUnited States Charlie Chan in Shanghai is the ninth Charlie Chan film produced by Fox Film Corporation with the title character played by Warner Oland. Plot Charlie Chan ar...

 

Gà tây hoang Trống Mái Tình trạng bảo tồn Ít quan tâm  (IUCN 3.1)[1] Phân loại khoa học Vực: Eukaryota Giới: Animalia Ngành: Chordata Lớp: Aves Bộ: Galliformes Họ: Phasianidae Chi: Meleagris Loài: M. gallopavo Danh pháp hai phần Meleagris gallopavoLinnaeus, 1758 Phân loài 6, xem văn bản Phân bố của M. gallopavo Gà tây hoang (danh pháp khoa học: Meleagris gallopavo) là một loài chim thuộc họ Gà tây. Tuy nhiên, nhi...