Curt Wiese
|
Read other articles:
The CrownHuang Guan ShanThe Crown (bottom left) with K2, Broad Peak and Gasherbrum group aboveHighest pointElevation7,295 m (23,934 ft)[1]Ranked 84thProminence1,919 m (6,296 ft)[2]ListingUltraCoordinates36°06′30″N 76°12′45″E / 36.10833°N 76.21250°E / 36.10833; 76.21250[2]GeographyThe CrownLocation in the Xinjiang LocationXinjiang, ChinaParent rangeYengisogat, KarakoramClimbingFirst ascent1993 by a Japanese te...
Gurun Kalahari (berwarna maroon) & Cekungan Kalahari (oranye) Gurun Kalahari di Namibia Gurun Kalahari adalah sabana yang terdapat di Afrika bagian selatan dengan luas 900.000 km2 yang meliputi sebagian besar Botswana dan beberapa bagian dari Namibia serta Afrika Selatan. Gurun Kalahari memiliki iklim semi-kering dengan bagian gurun dan terdapat padang rumput setelah terjadinya hujan. Gurun Kalahari juga menjadi habitat dari berbagai binatang dan tanaman, karena bukan sepenuhnya guru...
Alternative rock radio station in Detroit WDZHDetroit, MichiganUnited StatesBroadcast areaMetro DetroitFrequency98.7 MHz (HD Radio)BrandingAlt 98-7ProgrammingLanguage(s)EnglishFormatAlternative rockSubchannelsHD2: Channel QOwnershipOwnerAudacy, Inc.(Audacy License, LLC, as Debtor-in-Possession)Sister stationsWOMCWWJWXYTWXYT-FMWYCDHistoryFirst air date1961; 63 years ago (1961)Former call signsWBFG (1961–1980)WLLZ (1980–1996)WVMV (1996–2010)Call sign meaningDetroit's Hit...
Visual cryptography is a cryptographic technique which allows visual information (pictures, text, etc.) to be encrypted in such a way that the decrypted information appears as a visual image. One of the best-known techniques has been credited to Moni Naor and Adi Shamir, who developed it in 1994.[1] They demonstrated a visual secret sharing scheme, where an image was broken up into n shares so that only someone with all n shares could decrypt the image, while any n − 1 shares reveal...
Open di Francia 2012Qualificazioni singolare femminile Sport Tennis Tornei Singolare uomini (q) donne (q) ragazzi ragazze Doppio uomini donne misto ragazzi ragazze Singolare carrozzina uomini donne Doppio carrozzina uomini donne Leggende -45 +45 donne 2011 2013 Voce principale: Open di Francia 2012. Le qualificazioni del singolare femminile dell'Open di Francia 2012 sono state un torneo di tennis preliminare per accedere alla fase finale della manifestazione. I vincitori dell'ultimo t...
EEF1E1 التراكيب المتوفرة بنك بيانات البروتينOrtholog search: PDBe RCSB قائمة رموز معرفات بنك بيانات البروتين 2UZ8, 4BL7, 4BVX, 4BVY, 5BMU المعرفات الأسماء المستعارة EEF1E1, AIMP3, P18, eukaryotic translation elongation factor 1 epsilon 1 معرفات خارجية الوراثة المندلية البشرية عبر الإنترنت 609206 MGI: MGI:1913393 HomoloGene: 3161 GeneCards: 9521 علم الوج...
此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...
لمعانٍ أخرى، طالع عناقيد الغضب (توضيح). عناقيد الغضبThe Grapes of Wrath (بالإنجليزية) معلومات عامةالصنف الفني دراماتاريخ الصدور 1940مدة العرض 129 دقيقةاللغة الأصلية الإنجليزيةالعرض أبيض وأسود مأخوذ عن عناقيد الغضب البلد الولايات المتحدةمواقع التصوير كاليفورنيا — نيومكسيكو �...
Venezuelan baseball infielder (born 1996) In this Spanish name, the first or paternal surname is Torres and the second or maternal family name is Castro. Baseball player Gleyber TorresTorres with the New York Yankees in 2018New York Yankees – No. 25Second baseman / ShortstopBorn: (1996-12-13) December 13, 1996 (age 27)Caracas, VenezuelaBats: RightThrows: RightMLB debutApril 22, 2018, for the New York YankeesMLB statistics (through May 24, 2024)Batting average.264...
8th general election 1935 Alberta general election ← 1930 August 22, 1935 (1935-08-22) 1940 → ← outgoing membersmembers →63 seats in the Legislative Assembly of Alberta 32 seats were needed for a majorityTurnout81.8% Majority party Minority party Third party LIB Leader William Aberhart (de facto) William R. Howson David M. Duggan Party Social Credit Liberal Conservative Leader since September 3, 1935 October 21, 193...
Dingxi 定西Prefektur定西市Lokasi kota Dingxi di GansuCountryRRTProvinsiGansuLuas • Total20.300 km2 (7,800 sq mi)Populasi (2010) • Total2.698.622Zona waktuUTC+8 (China Standard) Dingxi (Hanzi: 定西; Pinyin: Dìngxī) adalah sebuah prefektur setingkat kota yang terletak di sebelah tenggara provinsi Gansu, Republik Rakyat Tiongkok. Geografi dan iklim Kota Dingxi terletak di tengah-tengah provinsi Gansu, 98 km sebelah timur Lanzhou, ...
JenisPenyiaran publikNegaraBelandaJangkauanBelandaDidirikan7 September 2014 (1927/1965)SloganThuis bij AVROTROS(At Home with AVROTROS)Tokoh pentingEd Nijpels (ketua)Situs resmiwww.avrotros.nl AVROTROS adalah sebuah penyiaran radio dan televisi Belanda, yang bermula dari tahun 1927. AVROTROS dibentuk pada 2014 dari penggabungan para pendahulunya AVRO dan TROS. Dari 1 Januari 2014, nama penyiaran gabungan tersebut dipakai dalam program-program bersama; sejak 7 September 2014, seluruh program ya...
Hindu guru (1829–1898) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Salig Ram – news · newspapers · books · scholar · JSTOR (December 2021) (Learn how and when to remove this message) Salig RamPersonalBorn14 March 1829Agra, Ceded Provinces, British IndiaDied6 December 1898Agra, North-Western Provinces, ...
Bookstore in New York Albertine Books Albertine Books is a bookstore in Manhattan, New York. Opened in 2014, it offers the largest collection in the United States of French-language books and translations from French into English.[1][2] It is located in the Payne Whitney House at 972 Fifth Avenue, between 78th and 79th Streets. In addition to its bookstore and reading room, Albertine Books hosts frequent public events and organizes French Book Corners in a network of independe...
Pemilihan Umum Pakistan 1977197019857 Maret 1977Semua 200 kursi dalam Majelis Nasional101 kursi untuk meraih status mayoritasKehadiran pemilih63.1% ( 0.1%)Kandidat Partai pertama Partai kedua Ketua Zulfikar Ali Bhutto Khan Abdul Wali Khan Partai PPP PNA Ketua sejak 30 November 1967 5 January 1977 Kursi ketua Larkana Peshawar Kursi sebelumnya 81 - Perolehan akhir 155 36 Perubahan kursi 74 36 Suara rakyat 10,148,040 6,032,062 Persentase 60.1% 35.7% S...
AfganAfgan pada tahun 2021LahirAfgansyah Reza27 Mei 1989 (umur 35)Jakarta, IndonesiaNama lainAfganAlmamaterMonash University MalaysiaPekerjaanPenyanyi-penulis laguaktorTahun aktif2007–sekarangKarier musikGenrePopR&BballadInstrumenVokalLabel Wanna B Music Production (2008–2010) Trinity Optima Production (2012–sekarang) Artis terkaitBebi RomeoBemby NoorDipha BarusIsyana SarasvatiRaisaTulus (penyanyi)Rendy PandugoUngu (grup musik)RossaSherina MunafMaudy AyundaVidi Aldia...
Pour le film de Christian-Jacque, voir La Symphonie fantastique Symphonie fantastique op. 14 (H 48) Épisode de la vie d'un artiste Page de garde du manuscrit de la symphonie. Genre Symphonie Nb. de mouvements 5 Musique Hector Berlioz Effectif Orchestre symphonique Durée approximative Environ 50 minutes Dates de composition février-avril 1830 Dédicataire Nicolas Ier de Russie Création 5 décembre 1830salle du Conservatoire de Paris Interprètes Chef d'orchestre : François-Anto...
Italian equestrian (born 1938) Paolo AngioniPersonal informationNationalityItalianBorn (1938-01-22) 22 January 1938 (age 86)Cagliari, ItalyHeight1.77 m (5 ft 10 in)Weight64 kg (141 lb)SportSportEquestrianismEventEventingClubCEPIM Passo Corese Medal record Representing Italy Olympic Games 1964 Tokyo Eventing, team Paolo Angioni (born 22 January 1938) is an Italian former equestrian and Olympic champion. He competed in the mixed three-day eventing, individual...
Type of mathematical link 41 knot In mathematics, a hyperbolic link is a link in the 3-sphere with complement that has a complete Riemannian metric of constant negative curvature, i.e. has a hyperbolic geometry. A hyperbolic knot is a hyperbolic link with one component. As a consequence of the work of William Thurston, it is known that every knot is precisely one of the following: hyperbolic, a torus knot, or a satellite knot. As a consequence, hyperbolic knots can be considered plentiful. A ...
Dewan Perwakilan Rakyat Daerah Kabupaten Lampung BaratDewan Perwakilan RakyatKabupaten Lampung Barat2019-2024JenisJenisUnikameral SejarahSesi baru dimulai19 Agustus 2019PimpinanKetuaEdi Novial, S.Kom. (PDI-P) sejak 26 September 2019 Wakil Ketua ISutikno (Demokrat) sejak 26 September 2019 Wakil Ketua IIErwansyah, S.H. (Gerindra) sejak 26 September 2019 KomposisiAnggota35Partai & kursi PDI-P (11) NasDem (1) PKB (1) Demokrat (6) ...