Chemiresistor

Simplified schematic of a single gap chemiresistive sensor. (not to scale)

A chemiresistor is a material that changes its electrical resistance in response to changes in the nearby chemical environment.[1] Chemiresistors are a class of chemical sensors that rely on the direct chemical interaction between the sensing material and the analyte.[2] The sensing material and the analyte can interact by covalent bonding, hydrogen bonding, or molecular recognition. Several different materials have chemiresistor properties: semiconducting metal oxides, some conductive polymers,[3] and nanomaterials like graphene, carbon nanotubes and nanoparticles. Typically these materials are used as partially selective sensors in devices like electronic tongues or electronic noses.

A basic chemiresistor consists of a sensing material that bridges the gap between two electrodes or coats a set of interdigitated electrodes. The resistance between the electrodes can be easily measured. The sensing material has an inherent resistance that can be modulated by the presence or absence of the analyte. During exposure, analytes interact with the sensing material. These interactions cause changes in the resistance reading. In some chemiresistors the resistance changes simply indicate the presence of analyte. In others, the resistance changes are proportional to the amount of analyte present; this allows for the amount of analyte present to be measured.

History

As far back as 1965 there are reports of semiconductor materials exhibiting electrical conductivities that are strongly affected by ambient gases and vapours.[4][5][6] However, it was not until 1985 that Wohltjen and Snow coined the term chemiresistor.[7] The chemiresistive material they investigated was copper phthalocyanine, and they demonstrated that its resistivity decreased in the presence of ammonia vapour at room temperature.[7]

In recent years chemiresistor technology has been used to develop promising sensors for many applications, including conductive polymer sensors for secondhand smoke, carbon nanotube sensors for gaseous ammonia, and metal oxide sensors for hydrogen gas.[2][8][9] The ability of chemiresistors to provide accurate real-time information about the environment through small devices that require minimal electricity makes them an appealing addition to the internet of things.[8]

Types of chemiresistor sensors

An oxygen sensing TiO2 film on an interdigitated electrode.[10]

Device architectures

Chemiresistors can be made by coating an interdigitated electrode with a thin film or by using a thin film or other sensing material to bridge the single gap between two electrodes. Electrodes are typically made of conductive metals such as gold and chromium which make good ohmic contact with thin films.[7] In both architectures, the sensing material controls the conductance between the two electrodes; however, each device architecture has its own advantages and disadvantages.

Interdigitated electrodes allow for a greater amount of the film's surface area to be in contact with the electrode. This allows for more electrical connections to be made and increases the overall conductivity of the system.[7] Interdigitated electrodes with finger sizes and finger spacing on the order of microns are difficult to manufacture and require the use of photolithography.[8] Larger features are easier to fabricate and can be manufactured using techniques such as thermal evaporation. Both interdigitated electrode and single-gap systems can be arranged in parallel to allow for the detection of multiple analytes by one device.[11]

Sensing materials

Semiconducting metal oxides

Metal oxide chemiresistor sensors were first commercialized in 1970[12] in a carbon monoxide detector that used powdered SnO2. However, there are many other metal oxides that have chemiresistive properties. Metal oxide sensors are primarily gas sensors, and they can sense both oxidizing and reducing gases.[2] This makes them ideal for use in industrial situations where gases used in manufacturing can pose a risk to worker safety.

Sensors made from metal oxides require high temperatures (200 °C or higher) to operate because, in order for the resistivity to change, an activation energy must be overcome.[2]

Metal oxide chemiresistors[12]
Metal oxide Vapours
Chromium titanium oxide H2S
Gallium oxide O2, CO
Indium oxide O3
Molybdenum oxide NH3
Tin oxide reducing gases
Tungsten oxide NO2
Zinc oxide hydrocarbons, O2
A graphene monolayer.[13]

Graphene

In comparison to the other materials graphene chemiresistor sensors are relatively new but have shown excellent sensitivity.[14] Graphene is an allotrope of carbon that consists of a single layer of graphite.[15] It has been used in sensors to detect vapour-phase molecules,[16][17][18] pH,[19] proteins,[19] bacteria,[20] and simulated chemical warfare agents.[21][22]

Carbon nanotubes

The first published report of nanotubes being used as chemiresistors was made in 2000.[23] Since then there has been research into chemiresistors and chemically sensitive field effect transistors fabricated from individual single-walled nanotubes,[24] bundles of single-walled nanotubes,[25][26] bundles of multi-walled nanotubes,[27][28] and carbon nanotube–polymer mixtures.[29][30][31][32] It has been shown that a chemical species can alter the resistance of a bundle of single-walled carbon nanotubes through multiple mechanisms.

Carbon nanotubes are useful sensing materials because they have low detection limits, and quick response times; however, bare carbon nanotube sensors are not very selective.[2] They can respond to the presence of many different gases from gaseous ammonia to diesel fumes.[2][9] Carbon nanotube sensors can be made more selective by using a polymer as a barrier, doping the nanotubes with heteroatoms, or adding functional groups to the surface of the nanotubes.[2][9]

Circular interdigitated electrodes with and without a gold nanoparticle chemiresistor film

.

Nanoparticles

Many different nanoparticles of varying size, structure and composition have been incorporated into chemiresistor sensors.[33][34] The most commonly used are thin films of gold nanoparticles coated with self-assembled monolayers (SAMs) of organic molecules.[35][36][37][38][39] The SAM is critical in defining some of the nanoparticle assembly’s properties. Firstly, the stability of the gold nanoparticles depends upon the integrity of the SAM, which prevents them from sintering together.[40] Secondly, the SAM of organic molecules defines the separation between the nanoparticles, e.g. longer molecules cause the nanoparticles to have a wider average separation.[41] The width of this separation defines the barrier that electrons must tunnel through when a voltage is applied and electric current flows. Thus by defining the average distance between individual nanoparticles the SAM also defines the electrical resistivity of the nanoparticle assembly.[42][43][44] Finally, the SAMs form a matrix around the nanoparticles that chemical species can diffuse into. As new chemical species enter the matrix it changes the inter-particle separation which in turn affects the electrical resistance.[45][46] Analytes diffuse into the SAMs at proportions defined by their partition coefficient and this characterizes the selectivity and sensitivity of the chemiresistor material.[41][47]

Polymerization of a polymer around a target molecule that is then washed out to leave shaped cavities behind.

Conductive polymers

Conductive polymers such as polyaniline and polypyrrole can be used as sensing materials when the target interacts directly with the polymer chain resulting in a change in conductivity of the polymer.[8][48] These types of systems lack selectivity due to the wide range of target molecules that can interact with the polymer. Molecularly imprinted polymers can add selectivity to conductive polymer chemiresistors.[49] A molecularly imprinted polymer is made by polymerizing a polymer around a target molecule and then removing the target molecule from the polymer leaving behind cavities matching the size and shape of the target molecule.[48][49] Molecularly imprinting the conductive polymer increases the sensitivity of the chemiresistor by selecting for the target's general size and shape as well as its ability to interact with the chain of the conductive polymer.[49]

References

  1. ^ Florinel-Gabriel Banica, Chemical Sensors and Biosensors: Fundamentals and Applications, John Wiley and Sons, Chichester, 2012, chapter 11, Print ISBN 978-0-470-71066-1; Web ISBN 0-470710-66-7; ISBN 978-1-118-35423-0.
  2. ^ a b c d e f g Khanna, V.K. (2012). Nanosensors: Physical, chemical, and biological. Boca Raton, FL: CRC Press. ISBN 978-1-4398-2712-3.
  3. ^ "Chemiresistor - Chemical Microsensors - Microsensors and Sensor Microsystems (MSTC)". Archived from the original on 2014-12-17. Retrieved 2014-12-17.
  4. ^ J. I. Bregman and A. Dravnieks Surface Effects in Detection, 1965 :Spartan
  5. ^ F. Gutman and L.E. Lyons Organic Semiconductors, 1967 :Wiley
  6. ^ Rosenberg, B.; Misra, T. N.; Switzer, R. (1968). "Mechanism of olfactory transduction". Nature. 217 (5127): 423–427. Bibcode:1968Natur.217..423R. doi:10.1038/217423a0. PMID 5641754. S2CID 4157172.
  7. ^ a b c d Wohltjen, H.; Barger, W.R.; Snow, A.W.; Jarvis, N.L. (1985). "A vapor-sensitive chemiresistor fabricated with planar microelectrodes and a langmuir-blodgett organic semiconductor film". IEEE Trans. Electron Devices. 32 (7): 1170–1174. Bibcode:1985ITED...32.1170W. doi:10.1109/T-ED.1985.22095. S2CID 44662151.
  8. ^ a b c d Liu, Yuan; Antwi-Boampong, Sadik; BelBruno, Joseph J.; Crane, Mardi A.; Tanski, Susanne E. (2013-09-01). "Detection of Secondhand Cigarette Smoke via Nicotine Using Conductive Polymer Films". Nicotine & Tobacco Research. 15 (9): 1511–1518. doi:10.1093/ntr/ntt007. ISSN 1462-2203. PMC 3842131. PMID 23482719.
  9. ^ a b c Azzarelli, Joseph M.; Mirica, Katherine A.; Ravnsbæk, Jens B.; Swager, Timothy M. (2014-12-23). "Wireless gas detection with a smartphone via rf communication". Proceedings of the National Academy of Sciences. 111 (51): 18162–18166. Bibcode:2014PNAS..11118162A. doi:10.1073/pnas.1415403111. ISSN 0027-8424. PMC 4280584. PMID 25489066.
  10. ^ Wang, H.; Chen, L.; Wang, J; Sun, Q.; Zhao, Y. (2014). "A micro oxygen sensor based on a nano sol-gel TiO2 thin film". Sensors. 14 (9): 16423–33. Bibcode:2014Senso..1416423W. doi:10.3390/s140916423. PMC 4208180. PMID 25192312.
  11. ^ Van Gerwen, Peter; Laureyn, Wim; Laureys, Wim; Huyberechts, Guido; Op De Beeck, Maaike; Baert, Kris; Suls, Jan; Sansen, Willy; Jacobs, P. (1998-06-25). "Nanoscaled interdigitated electrode arrays for biochemical sensors". Sensors and Actuators B: Chemical. 49 (1–2): 73–80. doi:10.1016/S0925-4005(98)00128-2.
  12. ^ a b Wilson, D. M.; Hoyt, S.; Janata, J.; Booksh, K.; Obando, L. (2001). "Chemical Sensors for Portable, Handheld Field Instruments". IEEE Sensors Journal. 1 (4): 256–274. Bibcode:2001ISenJ...1..256W. doi:10.1109/7361.983465.
  13. ^ Kiani, M. J.; Harun, F. K. C.; Ahmadi, M. T.; Rahmani, M.; Saeidmanesh, M.; Zare, M. (2014). "Conductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor". Nanoscale Res Lett. 9 (9): 371. Bibcode:2014NRL.....9..371K. doi:10.1186/1556-276X-9-371. PMC 4125348. PMID 25114659.
  14. ^ Cooper, J. S.; Myers, M.; Chow, E.; Hubble, L. J.; Pejcic, B.; et al. (2014). "Performance of graphene, carbon nanotube, and gold nanoparticle chemiresistor sensors for the detection of petroleum hydrocarbons in water". J. Nanoparticle Res. 16 (1): 1–13. Bibcode:2014JNR....16.2173C. doi:10.1007/s11051-013-2173-5. S2CID 97772800.
  15. ^ Rao, C.N.R.; Govindaraj, A. (2005). Nanotubes and nanowires. Cambridge, UK: The Royal Society of Chemistry. ISBN 978-0-85404-832-8.
  16. ^ Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; et al. (2007). "Detection of Individual Gas Molecules Adsorbed on Graphene". Nature Materials. 6 (9): 652–655. arXiv:cond-mat/0610809. Bibcode:2007NatMa...6..652S. doi:10.1038/nmat1967. PMID 17660825. S2CID 3518448.
  17. ^ Joshi, R. K.; Gomez, H.; Farah, A.; Kumar, A. (2007). "Graphene Films and Ribbons for Sensing of O2, and 100 ppm of CO and NO2 in Practical Conditions". Journal of Physical Chemistry C. 114 (14): 6610–6613. doi:10.1021/jp100343d.
  18. ^ Dan, Y.; et al. (2009). "Intrinsic Response of Graphene Vapor Sensors". Nano Letters. 9 (4): 1472–1475. arXiv:0811.3091. Bibcode:2009NanoL...9.1472D. doi:10.1021/nl8033637. PMID 19267449. S2CID 23190568.
  19. ^ a b Ohno, Y.; et al. (2009). "Electrolyte-Gated Graphene Field-Effect Transistors for Detecting pH and Protein Adsorption". Nano Letters. 9 (9): 3318–3322. Bibcode:2009NanoL...9.3318O. doi:10.1021/nl901596m. PMID 19637913.
  20. ^ Mohanty, N.; et al. (2008). "Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents". Nano Letters. 8 (12): 4469–4476. Bibcode:2008NanoL...8.4469M. doi:10.1021/nl802412n. PMID 19367973.
  21. ^ Robinson, J. T.; et al. (2008). "Reduced Graphene Oxide Molecular Sensors". Nano Letters. 8 (10): 3137–3140. Bibcode:2008NanoL...8.3137R. CiteSeerX 10.1.1.567.8356. doi:10.1021/nl8013007. PMID 18763832.
  22. ^ Hu, N. T.; et al. (2008). "Gas Sensor Based on p-Phenylenediamine Reduced Graphene Oxide". Sensors and Actuators B: Chemical. 163 (1): 107–114. doi:10.1016/j.snb.2012.01.016.
  23. ^ Kong, J.; et al. (2000). "Nanotube molecular wires as chemical sensors". Science. 287 (5453): 622–5. Bibcode:2000Sci...287..622K. doi:10.1126/science.287.5453.622. PMID 10649989.
  24. ^ Bradley, K.; et al. (2003). "Short-channel effects in contact-passivated nanotube chemical sensors". Appl. Phys. Lett. 83 (18): 3821–3. Bibcode:2003ApPhL..83.3821B. doi:10.1063/1.1619222.
  25. ^ Helbling, T.; et al. (2008). "Suspended and non-suspended carbon nanotube transistors for no2 sensing - a qualitative comparison". Physica Status Solidi B. 245 (10): 2326–30. Bibcode:2008PSSBR.245.2326H. doi:10.1002/pssb.200879599. S2CID 124825726.
  26. ^ Maeng, S.; et al. (2008). "Highly sensitive no2 sensor array based on undecorated single-walled carbon nanotube monolayer junctions". Appl. Phys. Lett. 93 (11): 113111. Bibcode:2008ApPhL..93k3111M. doi:10.1063/1.2982428.
  27. ^ Penza, M.; et al. (2009). "Effects of reducing interferers in a binary gas mixture on no2 gas adsorption using carbon nanotube networked films based chemiresistors". J. Phys. D: Appl. Phys. 42 (7): 072002. Bibcode:2009JPhD...42g2002P. doi:10.1088/0022-3727/42/7/072002. S2CID 98541592.
  28. ^ Wang, F.; et al. (2011). "Diverse chemiresistors based upon covalently modified multiwalled carbon nanotubes". J. Am. Chem. Soc. 133 (29): 11181–93. doi:10.1021/ja201860g. hdl:1721.1/74235. PMID 21718043.
  29. ^ Bekyarova, E.; et al. (2004). "Chemically functionalized single-walled carbon nanotubes as ammonia sensors". J. Phys. Chem. B. 108 (51): 19717–20. doi:10.1021/jp0471857.
  30. ^ Li, Y.; et al. (2007). "N-type gas sensing characteristics of chemically modified multi-walled carbon nanotubes and pmma composite". Sens. Actuators, B. 121 (2): 496–500. doi:10.1016/j.snb.2006.04.074.
  31. ^ Wang, F.; et al. (2008). "Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents". J. Am. Chem. Soc. 130 (16): 5392–3. doi:10.1021/ja710795k. PMID 18373343.
  32. ^ Wei, C.; et al. (2006). "Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites". J. Am. Chem. Soc. 128 (5): 1412–3. doi:10.1021/ja0570335. PMID 16448087.
  33. ^ Franke, M.E.; et al. (2006). "Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter?". Small. 2 (1): 36–50. doi:10.1002/smll.200500261. PMID 17193551.
  34. ^ Ibañez, F.J.; et al. (2012). "Chemiresistive sensing with chemically modified metal and alloy nanoparticles". Small. 8 (2): 174–202. doi:10.1002/smll.201002232. hdl:11336/5227. PMID 22052721.
  35. ^ Wohltjen, H.; et al. (1998). "Colloidal metal-insulator-metal ensemble chemiresistor sensor". Anal. Chem. 70 (14): 2856–9. doi:10.1021/ac9713464.
  36. ^ Evans, S.D.; et al. (2000). "Vapour sensing using hybrid organic-inorganic nanostructured materials". J. Mater. Chem. 10 (1): 183–8. doi:10.1039/A903951A.
  37. ^ Joseph, Y.; et al. (2004). "Gold-nanoparticle/organic linker films: Self-assembly, electronic and structural characterisation, composition and vapour sensitivity". Faraday Discussions. 125: 77–97. Bibcode:2004FaDi..125...77J. doi:10.1039/B302678G. PMID 14750666.
  38. ^ Ahn, H.; et al. (2004). "Electrical conductivity and vapor-sensing properties of ω-(3-thienyl)alkanethiol-protected gold nanoparticle films". Chem. Mater. 16 (17): 3274–8. doi:10.1021/cm049794x.
  39. ^ Saha, K.; et al. (2012). "Gold nanoparticles in chemical and biological sensing". Chem. Rev. 112 (5): 2739–79. doi:10.1021/cr2001178. PMC 4102386. PMID 22295941.
  40. ^ Liu, J.last2=; et al. (2012). "Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles". Chemosphere. 87 (8): 918–24. Bibcode:2012Chmsp..87..918L. doi:10.1016/j.chemosphere.2012.01.045. PMID 22349061.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  41. ^ a b Raguse, B.; et al. (2009). "Gold nanoparticle chemiresistor sensors in aqueous solution: Comparison of hydrophobic and hydrophilic nanoparticle films". J. Phys. Chem. C. 113 (34): 15390–7. doi:10.1021/Jp9034453.
  42. ^ Terrill, R.H.; et al. (1995). "Monolayers in three dimensions: Nmr, saxs, thermal, and electron hopping studies of alkanethiol stabilized gold clusters". J. Am. Chem. Soc. 117 (50): 12537–48. doi:10.1021/ja00155a017.
  43. ^ Wuelfing, W.P.last2=; et al. (2000). "Electronic conductivity of solid-state, mixed-valent, monolayer-protected au clusters". J. Am. Chem. Soc. 122 (46): 11465–72. doi:10.1021/ja002367+.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  44. ^ Wuelfing, W.P.; et al. (2002). "Electron hopping through films of arenethiolate monolayer-protected gold clusters". J. Phys. Chem. B. 106 (12): 3139–45. doi:10.1021/jp013987f.
  45. ^ Raguse, B.; et al. (2007). "Gold nanoparticle chemiresistor sensors: Direct sensing of organics in aqueous electrolyte solution". Anal. Chem. 79 (19): 7333–9. doi:10.1021/ac070887i. PMID 17722880.
  46. ^ Müller, K.-H.; et al. (2002). "Percolation model for electron conduction in films of metal nanoparticles linked by organic molecules". Phys. Rev. B. 66 (7): 75417. Bibcode:2002PhRvB..66g5417M. doi:10.1103/Physrevb.66.075417.
  47. ^ Bohrer, F.I.; et al. (2011). "Characterization of dense arrays of chemiresistor vapor sensors with submicrometer features and patterned nanoparticle interface layers". Anal. Chem. 83 (10): 3687–95. doi:10.1021/ac200019a. PMID 21500770.
  48. ^ a b Huang, Jiyong; Wei, Zhixiang; Chen, Jinchun (2008-09-25). "Molecular imprinted polypyrrole nanowires for chiral amino acid recognition". Sensors and Actuators B: Chemical. 134 (2): 573–578. doi:10.1016/j.snb.2008.05.038.
  49. ^ a b c Antwi-Boampong, Sadik; Mani, Kristina S.; Carlan, Jean; BelBruno, Joseph J. (2014-01-01). "A selective molecularly imprinted polymer-carbon nanotube sensor for cotinine sensing". Journal of Molecular Recognition. 27 (1): 57–63. doi:10.1002/jmr.2331. ISSN 1099-1352. PMID 24375584. S2CID 5196220.

See also

Read other articles:

Laure Saint-RaymondLaure Saint-Raymond pada 2012Lahir04 Agustus 1975 (umur 48)KebangsaanPrancisAlmamaterÉcole Normale SupérieureUniversitas Diderot PariaPenghargaanEMS Prize (2008)Satter Prize (2009)Karier ilmiahBidangMatematikaInstitusiÉcole Normale Supérieure de LyonPembimbing doktoralFrançois Golse Laure Saint-Raymond (kelahiran 1975) adalah seorang matematikawan Prancis, yang mengkhususkan diri dalam persamaan diferensial partial. Ia adalah profesor matematika di École normale...

 

Cet article est une ébauche concernant le sport. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations du projet sport. Le Comité national olympique d'Afghanistan (en dari, کمیته ملی المپیک افغانستان, en anglais, Afghanistan National Olympic Committee), créé en 1935 et reconnu par le Comité international olympique en 1936, est le comité national olympique d'Afghanistan. Présentation La première délégation olympiq...

 

Peta Kabupaten Polewali Mandar di Sulawesi Barat Berikut adalah daftar kecamatan dan kelurahan di Kabupaten Polewali Mandar, Provinsi Sulawesi Barat, Indonesia. Kabupaten Polewali Mandar terdiri dari 16 kecamatan, 23 kelurahan, dan 173 desa. Pada tahun 2017, jumlah penduduknya mencapai 517.677 jiwa dengan luas wilayah 1.775,65 km² dan sebaran penduduk 291 jiwa/km².[1][2] Daftar kecamatan dan kelurahan di Kabupaten Polewali Mandar, adalah sebagai berikut: Kode Kemendagri Keca...

أييوس سبيريدون تقسيم إداري البلد اليونان  [1] خصائص جغرافية إحداثيات 39°08′43″N 20°51′49″E / 39.145277777778°N 20.863611111111°E / 39.145277777778; 20.863611111111   الارتفاع 10 متر  السكان التعداد السكاني 979 (resident population of Greece) (2021)1167 (resident population of Greece) (2001)1062 (resident population of Greece) (1991)971 (resident pop...

 

Halaman ini berisi artikel tentang distrik di Subprefektur Tokachi. Untuk distrik dengan nama yang sama di Subprefektur Kamikawa, lihat Distrik Nakagawa (Teshio), Hokkaido. Wilayah Distrik Nakagawa di Subprefektur Tokachi. Nakagawa (Tokachi) (中川郡 (十勝)code: ja is deprecated , Nakagawa-gun (Tokachi)) adalah sebuah distrik yang berada di wilayah Subprefektur Tokachi, Hokkaido, Jepang. Per 31 Januari 2024, distrik ini memiliki estimasi jumlah penduduk sebesar 40.715 jiwa dan kepadatan p...

 

Independent city in Virginia, United States Independent city in Virginia, United StatesWinchester, VirginiaIndependent cityLoudoun Street Mall in Winchester in July 2020 SealLocation of Winchester in VirginiaWinchesterLocation of Winchester in Shenandoah ValleyShow map of Shenandoah ValleyWinchesterWinchester (Northern Virginia)Show map of Northern VirginiaWinchesterWinchester (Virginia)Show map of VirginiaWinchesterWinchester (the United States)Show map of the United StatesCoordinates: 39°1...

† Стеллерова корова Муляж стеллеровой коровы в Лондонском музее естествознания Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:Челюстно�...

 

Unincorporated community in Pennsylvania, U.S. The Lutheran Church of Leinbachs Leinbachs is an unincorporated community that is located in southern Bern Township, Pennsylvania, United States, just northwest of Reading and the Reading Regional Airport. It is also located near Blue Marsh Lake. Leinbachs' proximity to these locations has given it significant growth in recent years, including the construction of a suburban development, warehouses, and other enterprises. History The town derived ...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مارس 2023) أرتسيز (بالأوكرانية: Арциз)‏  أرتسيز أرتسيز تاريخ التأسيس 1816  تقسيم إداري ا...

American actress (1931–2003) Janice RulePress photo from a 1973 guest appearance on the second episode of Barnaby JonesBornMary Janice Rule(1931-08-15)August 15, 1931Norwood, Ohio, U.S.DiedOctober 17, 2003(2003-10-17) (aged 72)New York City, U.S.Alma materSouthern California Psychoanalytic Institute (PhD)Occupation(s)Actress, psychotherapistYears active1951–2003Spouses N. Richard Nash ​ ​(m. 1955; div. 1955)​ Robert Thom ̴...

 

One of the Earth's four temperate seasons For other uses, see Spring (disambiguation). SpringTemperate seasonBlooming flowers and trees in springNorthern temperate zoneAstronomical season21 March – 21 JuneMeteorological season1 March – 31 MaySolar (Celtic) season1 February – 30 AprilSouthern temperate zoneAstronomical season23 September – 22 DecemberMeteorological season1 September – 30 NovemberSolar (Celtic) season1 August – 31 OctoberSummerSpring AutumnWinter Part of a series on...

 

Chemical compound PNU-282,987Identifiers IUPAC name N-[(3'R)-1'-azabicyclo[2.2.2]oct-3'-yl]-4-chlorobenzamide CAS Number123464-89-1PubChem CID9795278ChemSpider7971045UNII810P1694K2ChEMBLChEMBL177611 YCompTox Dashboard (EPA)DTXSID801017103 Chemical and physical dataFormulaC14H17ClN2OMolar mass264.75 g·mol−13D model (JSmol)Interactive image SMILES C1CN2CCC1[C@H](C2)NC(=O)C3=CC=C(C=C3)Cl InChI InChI=1S/C14H17ClN2O/c15-12-3-1-11(2-4-12)14(18)16-13-9-17-7-5-10(13)6-8-17/h1-4,10,13H,5-...

1972/2004 book by Sydney E. Ahlstrom A Religious History of the American People AuthorSydney E. AhlstromLanguageEnglishSubjectAmerican religious historyPublisherYale University PressPublication date1972 (1st ed.)2004 (2nd ed.)Publication placeUnited StatesPages1,158 (1st ed.)1,192 (2nd ed.)ISBN978-0-385-11164-5 (1st ed.)Dewey Decimal200/.973LC ClassBR515 .A4 A Religious History of the American People (1st edition 1972, 2nd edition 2004) is a book by Sydney E. Ahlstrom and published by Ya...

 

Portmanteau name for nitrite derivatives Not to be confused with nitride, nitrate, or nitrogen dioxide. Nitrite Names IUPAC name Nitrite Systematic IUPAC name dioxidonitrate(1−) Other names nitrite Identifiers CAS Number 14797-65-0 Y 3D model (JSmol) Interactive image ChEBI CHEBI:16301 ChemSpider 921 EC Number 233-272-6 PubChem CID 946 UNII J39976L608 Y InChI InChI=1S/HNO2/c2-1-3/h(H,2,3)/p-1Key: IOVCWXUNBOPUCH-UHFFFAOYSA-MInChI=1/HNO2/c2-1-3/h(H,2,3)/p-1Key: IOVCWXUNBOP...

 

Concentrated solar thermal power station in the Mojave Desert of California SEGS redirects here. For the airport with that ICAO code, see Seymour Airport. Solar Energy Generating SystemsPart of the 354 MW SEGS solar complex in northern San Bernardino County, California.CountryUnited StatesLocationMojave DesertCoordinates35°01′54″N 117°20′53″W / 35.0316°N 117.348°W / 35.0316; -117.348StatusOperationalConstruction began1983Commission date1984Owner(s...

Pour les articles homonymes, voir Albrand. Louis AlbrandFonctionsConseiller régional de Provence-Alpes-Côte d'Azurdepuis 2021Conseiller municipal de Saint-CrépinBiographieNaissance 8 octobre 1949 (74 ans)Nationalité françaiseActivités Anciens cadres (2024), colonel honoraire, médecin militaire, médecinAutres informationsDistinctions Officier de la Légion d'honneur‎ (2018)Officier de l'ordre national du MériteMédaille des services militaires volontairesmodifier - modifier le...

 

Questa voce o sezione sull'argomento doppiatori italiani non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Monica Ward nel 2020 Monica Ward (Roma, 5 agosto 1965) è una doppiatrice, direttrice del doppiaggio e attrice italiana. Indice 1 Biografia 2 Doppiaggio 2.1 Film 2.2 Serie televisive 2.3 Film d'animazione 2.4 Serie animate 2.5 Videogiochi 3 Filmografi...

 

Polish footballer (1935–2017) Engelbert Jarek Personal informationFull name Engelbert Erwin JarekDate of birth (1935-06-07)7 June 1935Place of birth Rokittnitz, Hindenburg O.S., German Empire(today Rokitnica, Zabrze, Poland)Date of death 23 August 2017(2017-08-23) (aged 82)Place of death Sinzig, GermanyHeight 1.76 m (5 ft 9 in)Position(s) ForwardYouth career1946–1950 Górnik RokitnicaSenior career*Years Team Apps (Gls)1950–1953 Górnik Rokitnica 1953–1954 Ogniwo Ny...

الحاسوب التماثلي هو شكل من أشكال كمبيوتر يستخدم الجوانب المتغيرة باستمرار، من المظاهر الفيزيائية مثل الكهرباء، والكميات الميكانيكية والهيدروليكية أو إلى النموذج الذي يجري حل المشكلة.[1][2][3] في المقابل، الحواسيب الرقمية تمثل كميات متفاوتة بشكل متزايد، وتغيي�...

 

霧に包まれたゴールデンゲートブリッジ カリフォルニア州の気候は、緯度、標高および海岸からの距離によって砂漠気候から亜寒帯気候まで様々である。州の海岸部と南部は地中海性気候であり、幾分雨の多い冬と乾燥した夏を経験する。大洋の影響で一般に極端な気温の上下を抑えており、特に海岸地域では暖かい冬とかなり冷涼な夏を生んでいる。 気温の変化 沖�...