Share to: share facebook share twitter share wa share telegram print page

Cauchy momentum equation

The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.[1]

Main equation

In convective (or Lagrangian) form the Cauchy momentum equation is written as:

where

  • is the flow velocity vector field, which depends on time and space, (unit: )
  • is time, (unit: )
  • is the material derivative of , equal to , (unit: )
  • is the density at a given point of the continuum (for which the continuity equation holds), (unit: )
  • is the stress tensor, (unit: )
  • is a vector containing all of the accelerations caused by body forces (sometimes simply gravitational acceleration), (unit: )
  • is the divergence of stress tensor.[2][3][4] (unit: )

Commonly used SI units are given in parentheses although the equations are general in nature and other units can be entered into them or units can be removed at all by nondimensionalization.

Note that only we use column vectors (in the Cartesian coordinate system) above for clarity, but the equation is written using physical components (which are neither covariants ("column") nor contravariants ("row") ).[5] However, if we chose a non-orthogonal curvilinear coordinate system, then we should calculate and write equations in covariant ("row vectors") or contravariant ("column vectors") form.

After an appropriate change of variables, it can also be written in conservation form:

where j is the momentum density at a given space-time point, F is the flux associated to the momentum density, and s contains all of the body forces per unit volume.

Differential derivation

Let us start with the generalized momentum conservation principle which can be written as follows: "The change in system momentum is proportional to the resulting force acting on this system". It is expressed by the formula:[6]

where is momentum at time t, and is force averaged over . After dividing by and passing to the limit we get (derivative):

Let us analyse each side of the equation above.

Right side

The X component of the forces acting on walls of a cubic fluid element (green for top-bottom walls; red for left-right; black for front-back).
In the top graph we see approximation of function (blue line) using a finite difference (yellow line). In the bottom graph we see "infinitely many times enlarged neighborhood of point " (purple square from the upper graph). In the bottom graph, the yellow line is completely covered by the blue one, thus not visible. In the bottom figure, two equivalent derivative forms have been used: ], and the designation was used.

We split the forces into body forces and surface forces

Surface forces act on walls of the cubic fluid element. For each wall, the X component of these forces was marked in the figure with a cubic element (in the form of a product of stress and surface area e.g. with units ).

Adding forces (their X components) acting on each of the cube walls, we get:

After ordering and performing similar reasoning for components (they have not been shown in the figure, but these would be vectors parallel to the Y and Z axes, respectively) we get:

We can then write it in the symbolic operational form:

There are mass forces acting on the inside of the control volume. We can write them using the acceleration field (e.g. gravitational acceleration):

Left side

Let us calculate momentum of the cube:

Because we assume that tested mass (cube) is constant in time, so

Left and Right side comparison

We have

then

then

Divide both sides by , and because we get:

which finishes the derivation.

Integral derivation

Applying Newton's second law (ith component) to a control volume in the continuum being modeled gives:

Then, based on the Reynolds transport theorem and using material derivative notation, one can write

where Ω represents the control volume. Since this equation must hold for any control volume, it must be true that the integrand is zero, from this the Cauchy momentum equation follows. The main step (not done above) in deriving this equation is establishing that the derivative of the stress tensor is one of the forces that constitutes Fi.[1]

Conservation form

The Cauchy momentum equation can also be put in the following form:

Cauchy momentum equation (conservation form)

simply by defining:

where j is the momentum density at the point considered in the continuum (for which the continuity equation holds), F is the flux associated to the momentum density, and s contains all of the body forces per unit volume. uu is the dyad of the velocity.

Here j and s have same number of dimensions N as the flow speed and the body acceleration, while F, being a tensor, has N2.[note 1]

In the Eulerian forms it is apparent that the assumption of no deviatoric stress brings Cauchy equations to the Euler equations.

Convective acceleration

An example of convective acceleration. The flow is steady (time-independent), but the fluid decelerates as it moves down the diverging duct (assuming incompressible or subsonic compressible flow).

A significant feature of the Navier–Stokes equations is the presence of convective acceleration: the effect of time-independent acceleration of a flow with respect to space. While individual continuum particles indeed experience time dependent acceleration, the convective acceleration of the flow field is a spatial effect, one example being fluid speeding up in a nozzle.

Regardless of what kind of continuum is being dealt with, convective acceleration is a nonlinear effect. Convective acceleration is present in most flows (exceptions include one-dimensional incompressible flow), but its dynamic effect is disregarded in creeping flow (also called Stokes flow). Convective acceleration is represented by the nonlinear quantity u ⋅ ∇u, which may be interpreted either as (u ⋅ ∇)u or as u ⋅ (∇u), with u the tensor derivative of the velocity vector u. Both interpretations give the same result.[7]

Advection operator vs tensor derivative

The convective acceleration (u ⋅ ∇)u can be thought of as the advection operator u ⋅ ∇ acting on the velocity field u.[7] This contrasts with the expression in terms of tensor derivative u, which is the component-wise derivative of the velocity vector defined by [∇u]mi = ∂m vi, so that

Lamb form

The vector calculus identity of the cross product of a curl holds:

where the Feynman subscript notation a is used, which means the subscripted gradient operates only on the factor a.

Lamb in his famous classical book Hydrodynamics (1895),[8] used this identity to change the convective term of the flow velocity in rotational form, i.e. without a tensor derivative:[9][10]

where the vector is called the Lamb vector. The Cauchy momentum equation becomes:

Using the identity:

the Cauchy equation becomes:

In fact, in case of an external conservative field, by defining its potential φ:

In case of a steady flow the time derivative of the flow velocity disappears, so the momentum equation becomes:

And by projecting the momentum equation on the flow direction, i.e. along a streamline, the cross product disappears due to a vector calculus identity of the triple scalar product:

If the stress tensor is isotropic, then only the pressure enters: (where I is the identity tensor), and the Euler momentum equation in the steady incompressible case becomes:

In the steady incompressible case the mass equation is simply:

that is, the mass conservation for a steady incompressible flow states that the density along a streamline is constant. This leads to a considerable simplification of the Euler momentum equation:

The convenience of defining the total head for an inviscid liquid flow is now apparent:

in fact, the above equation can be simply written as:

That is, the momentum balance for a steady inviscid and incompressible flow in an external conservative field states that the total head along a streamline is constant.

Irrotational flows

The Lamb form is also useful in irrotational flow, where the curl of the velocity (called vorticity) ω = ∇ × u is equal to zero. In that case, the convection term in reduces to

Stresses

The effect of stress in the continuum flow is represented by the p and ∇ ⋅ τ terms; these are gradients of surface forces, analogous to stresses in a solid. Here p is the pressure gradient and arises from the isotropic part of the Cauchy stress tensor. This part is given by the normal stresses that occur in almost all situations. The anisotropic part of the stress tensor gives rise to ∇ ⋅ τ, which usually describes viscous forces; for incompressible flow, this is only a shear effect. Thus, τ is the deviatoric stress tensor, and the stress tensor is equal to:[11]

where I is the identity matrix in the space considered and τ the shear tensor.

All non-relativistic momentum conservation equations, such as the Navier–Stokes equation, can be derived by beginning with the Cauchy momentum equation and specifying the stress tensor through a constitutive relation. By expressing the shear tensor in terms of viscosity and fluid velocity, and assuming constant density and viscosity, the Cauchy momentum equation will lead to the Navier–Stokes equations. By assuming inviscid flow, the Navier–Stokes equations can further simplify to the Euler equations.

The divergence of the stress tensor can be written as

The effect of the pressure gradient on the flow is to accelerate the flow in the direction from high pressure to low pressure.

As written in the Cauchy momentum equation, the stress terms p and τ are yet unknown, so this equation alone cannot be used to solve problems. Besides the equations of motion—Newton's second law—a force model is needed relating the stresses to the flow motion.[12] For this reason, assumptions based on natural observations are often applied to specify the stresses in terms of the other flow variables, such as velocity and density.

External forces

The vector field f represents body forces per unit mass. Typically, these consist of only gravity acceleration, but may include others, such as electromagnetic forces. In non-inertial coordinate frames, other "inertial accelerations" associated with rotating coordinates may arise.

Often, these forces may be represented as the gradient of some scalar quantity χ, with f = ∇χ in which case they are called conservative forces. Gravity in the z direction, for example, is the gradient of ρgz. Because pressure from such gravitation arises only as a gradient, we may include it in the pressure term as a body force h = pχ. The pressure and force terms on the right-hand side of the Navier–Stokes equation become

It is also possible to include external influences into the stress term rather than the body force term. This may even include antisymmetric stresses (inputs of angular momentum), in contrast to the usually symmetrical internal contributions to the stress tensor.[13]

Nondimensionalisation

In order to make the equations dimensionless, a characteristic length r0 and a characteristic velocity u0 need to be defined. These should be chosen such that the dimensionless variables are all of order one. The following dimensionless variables are thus obtained:

Substitution of these inverted relations in the Euler momentum equations yields:

and by dividing for the first coefficient:

Now defining the Froude number:

the Euler number:

and the coefficient of skin-friction or the one usually referred as 'drag coefficient' in the field of aerodynamics:

by passing respectively to the conservative variables, i.e. the momentum density and the force density:

the equations are finally expressed (now omitting the indexes):

Cauchy momentum equation (nondimensional conservative form)

Cauchy equations in the Froude limit Fr → ∞ (corresponding to negligible external field) are named free Cauchy equations:

Free Cauchy momentum equation (nondimensional conservative form)

and can be eventually conservation equations. The limit of high Froude numbers (low external field) is thus notable for such equations and is studied with perturbation theory.

Finally in convective form the equations are:

Cauchy momentum equation (nondimensional convective form)

3D explicit convective forms

Cartesian 3D coordinates

For asymmetric stress tensors, equations in general take the following forms:[2][3][4][14]

Cylindrical 3D coordinates

Below, we write the main equation in pressure-tau form assuming that the stress tensor is symmetrical ():

See also

Notes

  1. ^ In 3D for example, with respect to some coordinate system, the vector j has 3 components, while the tensors σ and F have 9 (3×3), so the explicit forms written as matrices would be: Note, however, that if symmetrical, F will only contain 6 degrees of freedom. And F's symmetry is equivalent to σ's symmetry (which will be present for the most common Cauchy stress tensors), since dyads of vectors with themselves are always symmetrical.

References

  1. ^ a b Acheson, D. J. (1990). Elementary Fluid Dynamics. Oxford University Press. p. 205. ISBN 0-19-859679-0.
  2. ^ a b Berdahl, C. I.; Strang, W. Z. (October 1986). Behavior of a Vorticity-Influenced Asymmetric Stress Tensor in Fluid Flow (PDF) (Report). AIR FORCE WRIGHT AERONAUTICAL LABORATORIES. p. 13 (Below the main equation, authors describe ).
  3. ^ a b Papanastasiou, Tasos C.; Georgiou, Georgios C.; Alexandrou, Andreas N. (2000). Viscous Fluid Flow (PDF). CRC Press. pp. 66, 68, 143, 182 (Authors use ). ISBN 0-8493-1606-5.
  4. ^ a b Deen, William M. (2016). Introduction to Chemical Engineering Fluid Mechanics. Cambridge University Press. pp. 133–136. ISBN 978-1-107-12377-9.
  5. ^ David A. Clarke (2011). "A Primer on Tensor Calculus" (PDF). p. 11 (pdf 15).
  6. ^ Anderson, John D. Jr. (1995). Computational Fluid Dynamics (PDF). New York: McGraw-Hill. pp. 61–64. ISBN 0-07-001685-2.
  7. ^ a b Emanuel, G. (2001). Analytical fluid dynamics (second ed.). CRC Press. pp. 6–7. ISBN 0-8493-9114-8.
  8. ^ Lamb, Horace (1932). "Hydrodynamics" (6th ed.). Dover Publications.
  9. ^ Batchelor, G. K. (1967). "§3.5". An Introduction to Fluid Dynamics. Cambridge University Press. p. 160. ISBN 0-521-66396-2.
  10. ^ Weisstein, Eric W. "Convective Derivative". MathWorld.
  11. ^ Batchelor (1967), p. 142.
  12. ^ Feynman, Richard P.; Leighton, Robert B.; Sands, Matthew (1963), The Feynman Lectures on Physics, Reading, Massachusetts: Addison-Wesley, Vol. 1, §9–4 and §12–1, ISBN 0-201-02116-1
  13. ^ Dahler, J. S.; Scriven, L. E. (1961). "Angular Momentum of Continua". Nature. 192 (4797): 36–37. Bibcode:1961Natur.192...36D. doi:10.1038/192036a0. ISSN 0028-0836. S2CID 11034749.
  14. ^ Powell, Adam (12 April 2010). "The Navier-Stokes Equations" (PDF). p. 2 (Author uses ).

This information is adapted from Wikipedia which is publicly available.

Read other articles:

2019 studio album byR∃/MEMBERStudio album by SawanoHiroyuki[nZk]Released6 March 2019 (2019-03-06)Recorded2018-2019StudioABS RecordingHeartBeat. Recording StudioLAB RecordersStudio Sound DaliStudio GreenbirdSoundCity StudioStudio Sound ValleyVictor StudioGenrePoppop rockLength49:55LabelSacra MusicProducerHiroyuki SawanoSawanoHiroyuki[nZk] chronology 2V-ALK(2017) R∃/MEMBER(2019) iv(2021) Singles from R∃/MEMBER Binary StarReleased: 25 April 2018 (2018-04-…

اضغط هنا للاطلاع على كيفية قراءة التصنيف سرطان البحر كيبالعصر: عصر كمبري–عصر ثلثي أعلى قك ك أ س د ف بر ث ج ط ب ن رسم هيربست 1792 [1] حالة الحفظ   نوع ناقص البيانات[2] المرتبة التصنيفية نوع  التصنيف العلمي النطاق: حقيقيات النوى المملكة: حيوانات العويلم: بعديات حقيقية (غ

Ле-СалельLes Salelles Країна  Франція Регіон Овернь-Рона-Альпи  Департамент Ардеш  Округ Ларжантьєр Кантон Ле-Ван Код INSEE 07305 Поштові індекси 07140 Координати 44°26′05″ пн. ш. 4°06′13″ сх. д.H G O Висота 152 - 543 м.н.р.м. Площа 5,61 км² Населення 383 (01-2020[1]) Густота 59,0 ос./км²

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2019) تيم رينر   معلومات شخصية الميلاد 1 ديسمبر 1964 (59 سنة)[1][2]  برلين  مواطنة ألمانيا  الحياة العملية المهنة صحفي،  وكاتب،  ومنتج أسطوانات،  …

Monstera anomala Біологічна класифікація Царство: Рослини (Plantae) Клада: Судинні рослини (Tracheophyta) Клада: Покритонасінні (Angiosperms) Клада: Однодольні (Monocotyledon) Порядок: Частухоцвіті (Alismatales) Родина: Кліщинцеві (Araceae) Рід: Монстера (Monstera) Вид: M. anomala Біноміальна назва Monstera anomalaZuluaga & Croat Monst…

Джіу-джитсу Спеціалізація Ударна техніка Контакт Повний контакт Походження Японія Заснування XVI століття Попередники Сумо Наступники Дзюдо, Айкідо, Бразильське джиу-джитсу, Крав мага Майстри Кано Дзіґоро, Моріхей Уесіба, Такеда Сокаку Олімпіада Не включено Джіу-джитсу (я…

Copa das Ilhas Faroé de 2021 Løgmanssteypið 2021 Dados Participantes 18 Organização FSF Local de disputa Ilhas Faroé Período 10 de abril de 2021 – 4 de dezembro de 2021 Gol(o)s 63 Partidas 19 Média 3,32 gol(o)s por partida Campeão B36 Tórshavn Vice-campeão NSÍ Runavík ◄◄ 2020 2022 ►► A Copa das Ilhas Faroe de 2021 foi a 67ª edição da Copa das Ilhas Faroé. O torneio se iniciou no dia 10 de abril e terminou no dia 04 de dezembro. O B36 Tórshavn conquistou o título apó…

  لمعانٍ أخرى، طالع جورج ستيفنز (توضيح). جورج ستيفنز معلومات شخصية الميلاد 22 أبريل 1803  تاريخ الوفاة 15 أغسطس 1894 (91 سنة)   مواطنة الولايات المتحدة  الحياة العملية المهنة سياسي  تعديل مصدري - تعديل   جورج ستيفنز (بالإنجليزية: George Stevens)‏ هو سياسي أمريكي، ولد في 22 أبر…

Lapis Re:Lightsラピスリライツ ~この世界のアイドルは魔法が使える~(Rapisu Riraitsu: Kono Sekai no Idol wa Mahō ga Tsukaeru)GenreIdola, mahō shōjo, musik[1][2] Seri animeSutradaraHiroyuki HataProduserKeisuke FukunagaYuuma OogamiKenjirou YokoyamaChiaki TanimotoJun KosakaKenta MotohashiTomohiro TanakaKeisuke KaminagaJin QianSkenarioHajime AsanoKasumi TsuchidaMusikSatoshi HōnoStudioYokohama Animation LaboratoryPelisensiFunimationSaluranasliTokyo MX, BS11,…

Berikut ini adalah daftar penampilan JKT48 di luar negeri: Amerika Serikat Acara spesial Tanggal Acara Lokasi Menampilkan 12 September 2022 ERIGO-X (Supported by Tokopedia) in New York Fashion Week (NYFW) The Shows 2022 (Presented by Afterpay): Spring/Summer 2023 Spring Studios, Kota New York, New York Zee; bersama Raffi Ahmad, Angga Yunanda, Refal Hady, Gabriel Prince, Hassan Alaydrus, Uus, Iben MA, Raline Shah, Anya Geraldine, Enzy Storia, dan Beby Tsabina Asia Konser Tanggal Acara Lokasi Seca…

Beispiel für eine Überlaufschwelle am Abfluss des Fuhsekanals in die Oker im Braunschweiger Südseegebiet Die Überlaufschwelle begrenzt den höchstmöglichen Wasserstand und den Gesamtstauraum in natürlichen oder künstlich geschaffenen Wasserbecken, wie etwa bei einem See, einer Talsperre, einem Kanal, einem Schwimmbecken, einer Zisterne, einer Kläranlage oder Ähnlichem. Im Gegensatz zu anderen technischen Einrichtungen wie beispielsweise einem Wehr ist sie nicht in der Höhe verstellbar,…

UrsicinoInformación personalNacimiento inicios del siglo IVdesconocidoFallecimiento después de 360[1]​desconocidoInformación profesionalOcupación Oficial militar Años activo (349-360)Cargos ocupados Magister equitum Lealtad Imperio romano de OrienteRama militar Ejército romano Rango militar Magister equitum orientalMagister equitum per GalliasMagister peditum orientalConflictos revuelta judía (351-352)guerra de la Galia (353-359)guerra sasánida (337-363)[editar datos en W…

Italian painter Dream of the Virgin Simone di Filippo Benvenuti, known as Simone dei Crocifissi or Simone da Bologna (about 1330 - 1399), was an Italian painter. Born and died in Bologna, he painted many religious panel paintings, and also frescoes in the churches of Santo Stefano and San Michele in Bosco, both at Bologna. Life Simone dei Crocifissi was born in Bologna. He was son of the shoemaker Filippo di Benvenuto. In the 17th century he was renamed of the Crucifixes (dei Crocifissi) for his…

This article needs additional citations for verification. Relevant discussion may be found on the talk page. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Clann na Poblachta – news · newspapers · books · scholar · JSTOR (November 2007) (Learn how and when to remove this template message) Political party in the Republic of Ireland Clann na Poblachta LeaderSeán M…

本列表列出2007年所上映的香港電影作品。 片名 英文片名 導演 重要演員 上映日期 生日快樂 Happy Birthday 馬楚成 古天樂、劉若英、周俊偉、曾寶儀 01月18日 一樓一鬼 House of the Invisibles 李卓臻 林雪、唐寧、黎耀祥 01月18日 雀聖3:自摸三百番 Kung Fu Mahjong 3: The Final Duel 林子皓 郭晉安、楊思琦、陳百祥、元秋 01月18日 A貨B貨 Luxury Fantasy 黃家輝 譚耀文、蔣雅文、李蘢怡、魏駿傑 01月3…

Stasiun Yokohama横浜駅Stasiun Yokohama dilihat dari udara, Oktober 2005Lokasi1 Takashima (Keikyu)2 Takashima (JR East)1 Minami-Saiwai (Tokyu, Sotetsu, Subway)Nishi-ku, Yokohama-shi, Kanagawa-kenJepangPengelola JR East Keikyu Tokyu Corporation Yokohama Minatomirai Railway Sagami Railway Yokohama City Transportation Bureau Penghubung antarmodaterminal BusSejarahDibuka1872Sunting kotak info • L • BBantuan penggunaan templat iniStasiun Yokohama (横浜駅code: ja is deprecated , Yok…

City in Minnesota, United States City in Minnesota, United StatesEvelethCityNickname: Hockey TownMotto: Where dreams come true!”Location of the city of Evelethwithin St. Louis County, MinnesotaCoordinates: 47°27′46″N 92°32′25″W / 47.46278°N 92.54028°W / 47.46278; -92.54028CountryUnited StatesStateMinnesotaCountySt. LouisEstablished1893Government • MayorRobert VlaisavljevichArea[1] • Total6.48 sq mi (16.78&#…

此條目需要擴充。 (2018年5月4日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此模板移除。   关于与「修行」標題相近或相同的条目,請見「修道」。  关于与「修行」標題相近或相同的条目,請見「修身」。 一名苦修者在瀑布下修煉自己的定力和耐力 佛教 基本教義 四圣谛 八正道 十二因缘 五蘊 緣起 空性 因果 …

Sesium hidroksida Penanda Nomor CAS 21351-79-1 Y Model 3D (JSmol) Gambar interaktif 3DMet {{{3DMet}}} ChEBI CHEBI:33988 Y ChemSpider 56494 Y Nomor EC PubChem CID 62750 Nomor RTECS {{{value}}} UNII 458ZFZ6235 Nomor UN 2682 CompTox Dashboard (EPA) DTXSID7066699 InChI InChI=1S/Cs.H2O/h;1H2/q+1;/p-1 YKey: HUCVOHYBFXVBRW-UHFFFAOYSA-M YInChI=1/Cs.H2O/h;1H2/q+1;/p-1Key: HUCVOHYBFXVBRW-REWHXWOFAG SMILES [OH-].[Cs+] Sifat Rumus kimia CsOH Massa molar 149.912 g/mol…

Currency of Canada Canadian dollarDollar canadien (French) Can$, C$, CA$, CDN$, CAD2011 Frontier series (polymer notes)ISO 4217CodeCAD (numeric: 124)Subunit0.01UnitUnitdollarSymbol$‎NicknameLoonie, buck (in English) Huard, piastre (pronounced piasse in popular usage) (in French)DenominationsSubunit 1⁄100Cent(in English) and sou (colloquial in French)Symbol Cent¢Banknotes$5, $10, $20, $50, $100Coins Freq. used5¢, 10¢, 25¢, $1, $2 Rarely used1…

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 3.135.216.20