C parity

In physics, the C parity or charge parity is a multiplicative quantum number of some particles that describes their behavior under the symmetry operation of charge conjugation.

Charge conjugation changes the sign of all quantum charges (that is, additive quantum numbers), including the electrical charge, baryon number and lepton number, and the flavor charges strangeness, charm, bottomness, topness and Isospin (I3). In contrast, it doesn't affect the mass, linear momentum or spin of a particle.

Formalism

Consider an operation that transforms a particle into its antiparticle,

Both states must be normalizable, so that

which implies that is unitary,

By acting on the particle twice with the operator,

we see that and . Putting this all together, we see that

meaning that the charge conjugation operator is Hermitian and therefore a physically observable quantity.

Eigenvalues

For the eigenstates of charge conjugation,

.

As with parity transformations, applying twice must leave the particle's state unchanged,

allowing only eigenvalues of the so-called C-parity or charge parity of the particle.

Eigenstates

The above implies that for eigenstates, Since antiparticles and particles have charges of opposite sign, only states with all quantum charges equal to zero, such as the photon and particle–antiparticle bound states like π0, η0, or positronium, are eigenstates of

Multiparticle systems

For a system of free particles, the C parity is the product of C parities for each particle.

In a pair of bound mesons there is an additional component due to the orbital angular momentum. For example, in a bound state of two pions, π+ π with an orbital angular momentum L, exchanging π+ and π inverts the relative position vector, which is identical to a parity operation. Under this operation, the angular part of the spatial wave function contributes a phase factor of (−1)L, where L is the angular momentum quantum number associated with L.

.

With a two-fermion system, two extra factors appear: One factor comes from the spin part of the wave function, and the second by considering the intrinsic parities of both the particles. Note that a fermion and an antifermion always have opposite intrinsic parity. Hence,

Bound states can be described with the spectroscopic notation 2S+1LJ (see term symbol), where S is the total spin quantum number (not to be confused with the S orbital), J is the total angular momentum quantum number, and L the total orbital momentum quantum number (with quantum number L = 0, 1, 2, etc. replaced by orbital letters S, P, D, etc.).

Example
positronium is a bound state electron-positron similar to a hydrogen atom. The names parapositronium and orthopositronium are given to the states 1S0 and 3S1.
Orbital :   1S0 γ + γ          3S1 γ + γ + γ
ηC :   +1 = (−1) × (−1) −1 = (−1) × (−1) × (−1)

Experimental tests of C-parity conservation

  • : The neutral pion, , is observed to decay to two photons, γ+γ . We can infer that the pion therefore has but each additional γ introduces a factor of −1 to the overall C-parity of the pion. The decay to 3γ would violate C parity conservation. A search for this decay was conducted[1] using pions created in the reaction
  • :[2] Decay of the eta meson.
  • annihilations[3]

See also

References

  1. ^ MacDonough, J.; et al. (1988). "New searches for the C-noninvariant decay π0→3γ and the rare decay π0→4γ". Physical Review D. 38 (7): 2121–2128. Bibcode:1988PhRvD..38.2121M. doi:10.1103/PhysRevD.38.2121. PMID 9959363.
  2. ^ Gormley, M.; et al. (1968). "Experimental test of C invariance in η → π+ππ0". Physical Review Letters. 21 (6): 402. Bibcode:1968PhRvL..21..402G. doi:10.1103/PhysRevLett.21.402.
  3. ^ Baltay, C.; et al. (1965). "Mössbauer effect in K40 using an accelerator". Physical Review Letters. 14 (15): 591. Bibcode:1965PhRvL..14..591R. doi:10.1103/PhysRevLett.14.591.

Read other articles:

Disambiguazione – Se stai cercando altri significati, vedi Città (disambigua). Questa voce o sezione sull'argomento sociologia non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Veduta di Napoli, il cui nome antico era Neapolis (Νεάπολις, in greco «nuova città») Warka (Iraq): resti della prima ...

 

 

Untuk kegunaan lain, lihat Mandala. Mandala ShojiLahirMandala Abadi Shoji6 Oktober 1982 (umur 41)Surabaya, Jawa Timur, IndonesiaNama lainMandala ShojiAlmamaterUniversitas Persada Indonesia YAIPekerjaanAktorPolitikusPembawa acaraTahun aktif2000 - sekarangPartai politik Partai Kebangkitan Bangsa (2014—2018) Partai Amanat Nasional (2019—sekarang) Suami/istriMaridha Deanova Safriana ​ ​(m. 2011)​Anak3 Mandala Abadi Shoji (lahir 6 Oktober 1982)...

 

 

У этого термина существуют и другие значения, см. Доспат (значения).Доспатболг. Доспат, Доспатска река, греч. Δεσπάτης Характеристика Длина 97 км Бассейн 633 км² Водоток Исток   (Т) (B)    • Местоположение Родопы  • Координаты 41°53′42″ с. ш. 23°47′...

Sampul Playground Psychotics adalah album oleh Frank Zappa, diterbitkan pada 1992 oleh Barking Pumpkin. Daftar lagu Disc one Here Comes the Gear, Lads – 1:00 The Living Garbage Truck – 1:20 A Typical Sound Check – 1:19 This Is Neat – 0:23 The Motel Lobby – 1:21 Getting Stewed – 0:55 The Motel Room – 0:29 Don't Take Me Down – 1:11 The Dressing Room – 0:24 Learning Penis Dimension – 2:02 You There, with the Hard On! – 0:25 Zanti Serenade (Ian Underwood, Don Preston, Zappa)...

 

 

American actress (1930–2024) Jackie LougheryLoughery in a 1956 American Airlines press photographBornJacqueleen Virginia Loughery [1](1930-04-18)April 18, 1930Brooklyn, New York, U.S.DiedFebruary 23, 2024(2024-02-23) (aged 93)Los Angeles, California, U.S.Other namesEvelyn AveryOccupationsActressbeauty pageant titleholderSpouses Guy Mitchell ​ ​(m. 1952; div. 1955)​ Jack Webb ​ ​(m. 1958; div.&...

 

 

МифологияРитуально-мифологическийкомплекс Система ценностей Сакральное Миф Мономиф Теория основного мифа Ритуал Обряд Праздник Жречество Мифологическое сознание Магическое мышление Низшая мифология Модель мира Цикличность Сотворение мира Мировое яйцо Мифическое �...

Given non-uniformly sampled data points on a toroidal helix (top), the first two Diffusion Map coordinates with Laplace–Beltrami normalization are plotted (bottom). The Diffusion Map unravels the toroidal helix recovering the underlying intrinsic circular geometry of the data. Diffusion maps is a dimensionality reduction or feature extraction algorithm introduced by Coifman and Lafon[1][2][3][4] which computes a family of embeddings of a data set into Euclide...

 

 

Russian sinologist, historian, and missionary (1777–1853) You can help expand this article with text translated from the corresponding article in Russian. (October 2023) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wi...

 

 

Japanese magical girl anime franchise Magical Princess Minky MomoPromotional art for the second anime series魔法のプリンセス ミンキー モモ(Mahō no Purinsesu Minkī Momo)GenreMagical girlCreated byTakeshi Shudo Anime television seriesDirected byKunihiko YuyamaProduced byMinoru Ōno (Yomiko Advertising)Hiroshi KatōMasaru UmeharaWritten byTakeshi ShudoMusic byHiroshi TakadaStudioAshi ProductionsLicensed byNA: CrunchyrollOriginal networkTV TokyoEnglis...

  关于与「內閣總理大臣」標題相近或相同的条目页,請見「內閣總理大臣 (消歧義)」。 日本國內閣總理大臣內閣總理大臣紋章現任岸田文雄自2021年10月4日在任尊称總理、總理大臣、首相、阁下官邸總理大臣官邸提名者國會全體議員選出任命者天皇任期四年,無連任限制[註 1]設立法源日本國憲法先前职位太政大臣(太政官)首任伊藤博文设立1885年12月22日,...

 

 

الاتحاد الدولي لرياضة التسلق الاختصار (بالإنجليزية: IFSC)‏  المقر الرئيسي تورينو، إيطاليا تاريخ التأسيس 27 يناير 2007  منطقة الخدمة الأرض،  وعالميًّا  [لغات أخرى]‏  العضوية رابطة الاتحادات الرياضية الدولية للألعاب الأولمبية الصيفية  ماركو ماريا سكولاريس �...

 

 

Historic site in East Sussex, United KingdomEmbassy CourtEmbassy Court seen from the southeastLocationKings Road, Brighton BN1 2PY, Brighton and Hove, East Sussex, United KingdomCoordinates50°49′23″N 0°09′23″W / 50.8230°N 0.1564°W / 50.8230; -0.1564Height110 feet (34 m)Built1934–35Built forMaddox PropertiesRestored2004–05Restored byConran and Partners; Makers LtdArchitectWells CoatesArchitectural style(s)Art Deco/ModernistOwnerBluestorm ...

Annual international film festival in North Macedonia This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Manaki Brothers Film Festival – news · newspapers · boo...

 

 

أعيان الزمان وجيران النعمان في مقبرة الخيزران أعيان الزمان وجيران النعمان  المؤلف وليد الأعظمي  اللغة العربية  تاريخ النشر 2001  الموضوع علم التراجم  تعديل مصدري - تعديل   أعيان الزمان وجيران النعمان في مقبرة الخيزران، وهو من أشهر الكتب في تراجم أهل بغداد ممن ...

 

 

Cet article est une ébauche concernant une localité de la Communauté valencienne. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir Ares (homonymie). Ares del Maestrat Ares del Maestre (es) Héraldique Vue d'Ares del Maestrat avec le mola del Castell. Administration Pays Espagne Communauté autonome Communauté valencienne Province Province de Castellón Comarque Alt Maestrat D...

Japanese fictional prose narrative and folktale Princess Kaguya redirects here. For the Studio Ghibli animated film, see The Tale of the Princess Kaguya (film). For the 1935 drama film, see Princess Kaguya (1935 film). For the 1987 live-action film, see Princess from the Moon. For other uses, see Kaguya. Kaguyahime redirects here. For the Japanese band, see Kaguyahime (band). The Receding Princess from The Japanese Fairy Book, 1908 The Tale of the Bamboo Cutter (Japanese: 竹取物語, Hepbur...

 

 

Mexican footballer In this Spanish name, the first or paternal surname is Fuentes and the second or maternal family name is Vargas. Luis Fuentes Fuentes with UNAM in 2016Personal informationFull name Luis Fernando Fuentes VargasDate of birth (1986-09-14) 14 September 1986 (age 37)Place of birth Chetumal, Quintana Roo, MexicoHeight 1.72 m (5 ft 8 in)Position(s) Left-backYouth career2007 Pumas MorelosSenior career*Years Team Apps (Gls)2007–2018 UNAM 257 (6)2017 →...

 

 

Disambiguazione – Se stai cercando altri significati, vedi Randazzo (disambigua). Randazzocomune Randazzo – Veduta LocalizzazioneStato Italia Regione Sicilia Città metropolitana Catania AmministrazioneSindacoAlfonsa Caliò, Cosimo Gambadauro, Isabella Giusto (commissari straordinari) dal 30-1-2024 TerritorioCoordinate37°52′38.5″N 14°57′00.43″E37°52′38.5″N, 14°57′00.43″E Altitudine765 m s.l.m. Superficie205,62 km² Abitanti10 23...

جواز سفر توفالومعلومات عامةنوع المستند جواز سفرالبلد توفالوالغرض التعريف (هوية شخصية)صادر عن  توفالومتطلبات الاستحقاق جنسية توفالوتعديل - تعديل مصدري - تعديل ويكي بيانات جواز سفر توفالو هو وثيقة السفر الدولية التي يتم إصدارها لمواطني توفالو. متطلبات التأشيرة اعتبارًا ...

 

 

IFK LuleåGrundad20 september 1900HemortLuleå, SverigeHemmaarenaNyabvallen (5 000)OrdförandeJörgen ErikssonTränareBen Hanley Hemmaställ Bortaställ MeriterAllsvenskasäsonger1 (senast 1971)Placering iallsvenskansmaratontabell54:aSäsonger iSveriges nästhögsta division29 (senast 1998)ÖvrigtSupportrarHeja IFKWebbplatsIFK Luleå IFK Luleå, egentligen Idrottsföreningen Kamraterna Luleå, grundad 20 september 1900[1], är en idrottsförening i Luleå där man är stadens största fo...