Burst suppression

Electroencephalogram (EEG) displaying burst suppression patterns. Onset of bursts are indicated by solid arrows; offset, by open arrows. In both A and B, the interval between each vertical dotted line is one second.

Burst suppression is an electroencephalography (EEG) pattern that is characterized by periods of high-voltage electrical activity alternating with periods of no activity in the brain. The pattern is found in patients with inactivated brain states, such as from general anesthesia, coma, or hypothermia.[1] This pattern can be physiological, as during early development, or pathological, as in diseases such as Ohtahara syndrome.[2]

History

The burst suppression pattern was first observed by Derbyshire et al. while studying effects of anesthetics on feline cerebral cortices in 1936, where the researchers noticed mixed slow and fast electrical activity with decreasing amplitude as anesthesia deepened.[3] In 1948, Swank and Watson coined the term "burst-suppression pattern" to describe the alternation of spikes and flatlines in electrical activity in deep anesthesia.[4] It wasn't until after the early 1960s that the burst suppression pattern began being used in medical settings; it had been primarily observed in animal studies and psychosurgeries.[5]

Mechanisms

A paper published in 2023 showed that burst suppression and epilepsy may share the same ephaptic coupling mechanism.[6] When inhibitory control is sufficiently low, as in the case of certain general anesthetics such as sevoflurane (due to a decrease in the firing of interneurons[7]), electric fields are able to recruit neighboring cells to fire synchronously, in a burst suppression pattern. This same mechanism also underlies epileptic bursts, but the magnitude of bursts is comparatively weaker in burst suppression, as the neuronal network still retains partial inhibitory control under the effects of anesthesia.

Characteristics

The pseudo-rhythmic pattern of burst suppression is dictated by extracellular calcium depletion and the ability of neurons to restore the concentration.[4] Bursts are accompanied by depletion of extracellular cortical calcium ions to levels that inhibit synaptic transmission, which leads to suppression periods.[4] During suppression, neuronal pumps restore the calcium ion concentrations to normal levels, thus causing the cortex to be subject to the process again.[4] As the brain becomes more inactive, burst periods become shorter and suppression periods become longer.[8] The shortening of bursts and lengthening of suppression is caused by the central nervous system's inability to properly regulate calcium levels due to increased blood–brain permeability.[8]

At the cellular level, hyperpolarization of the membrane potential of cortical neurons reliably precedes any overt electroencephalographic activity of burst suppression.[9] This hyperpolarization, which has been attributed to an increase in neuronal membrane potassium conductance,[9] has been hypothesized to play a major role in the induction of burst suppression, supported by the induction of burst suppression through the application of a direct acting GABAA agonist, muscimol.[5] In contrast, inhibition is diminished when burst suppression is induced through the use of isoflurane.[10] Another theory is that alterations in brain metabolism regulate activity dependent slow modulation of ATP-gated potassium channel conductance which induces burst suppression.[1] However, modulating inhibitory activity alone may not be sufficient for burst suppression, and modulation in excitatory synaptic efficiency, stemming from the depletion and subsequent recovery of interstitial calcium levels, could contribute to the induction of burst suppression.[5]

Burst episodes are associated with excitatory activity in cortical neurons.[11] Suppression is caused by the absence of synaptic activity of cortical neurons; however, some thalamocortical neurons exhibit oscillations in the delta frequency range during these periods.[9] The burst suppression pattern varies with the brain anesthetic concentration when pharmacologically inducing coma.[12] Level of suppression is adjustable by decreasing or increasing anesthetic infusion rate, thus adjusting the level of inactivation.[13]

While burst suppression has typically been viewed as a homogeneous brain state, recent studies have shown that bursts and suppressions can occur in specific regions while other regions are unaffected.[14] The fact that the burst suppression pattern persists after a patient undergoes cortical deafferentation indicates that burst suppression represents an intrinsic dynamic mode of cortex.[5] Even when a burst appears to be homogeneous across the brain, the timing of the bursts in different regions may differ.[14]

Burst suppression patterns can be classified through comparisons of burst duration and inter-burst intervals, maximum peak to peak voltage, and the ratio of power in high versus low frequencies. (Akrawi et al., 1996)[15] Burst suppression with identical bursts suggests a deterministic process of burst generation, whereas other burst suppression patterns depend on stochastic processes.[2] Burst suppression with identical bursts is a distinct pathological EEG pattern that is typical in diffuse cerebral ischemia and is associated with poor outcomes in comatose patients after cardiac arrest.[2]

Electrophysiology

Bursts are identifiable on EEG readings by their high amplitude (75-250μV), typically short period of 1–10 seconds, and have frequency ranges of 0–4 Hz (δ) and 4–7 Hz (θ).[16] Suppression episodes are identifiable by their low amplitude (< 5μV) and typically long period (> 10s).[16]

EEG recordings of burst-suppression pattern differ between adults and neonates because of diverse pattern fluctuations found in the EEG of neonates.[16] These fluctuations, along with sudden changes in synchronous neuron firing, are caused by development of the newborn's brain.[16] Burst suppression patterns also occur spontaneously during neonatal development, rather than as a characteristic of inactivated brains as in adults.[12]

Quantification

In order to quantify the burst suppression pattern, the EEG signal must be subject to segmentation.[17] The first segmentation used a fixed voltage-threshold, and various methods for segmentation or burst detection have developed in time domain,[12] frequency (Fourier) domain, and both.[18] These processes separates burst and suppression episodes based on EEG features such as entropies, non-linear-energy-operator, voltage variance, or adaptation of constant false alarm rate (CFAR) algorithm,[19] etc. When the features represent distinguishable patterns of burst and suppression, a fixed threshold using ROC-curve or machine learning methods[18] are used for segmentation.

Quantifying the burst suppression pattern allows for calculation of the burst suppression ratio (BSR) by assigning binary values of 0 to bursts and 1 to suppression episodes.[17] Thus, a burst suppression ratio of 1 is associated with a state of the brain that shows no electrical activity, while a ratio of 0 indicates that the brain is active. The burst suppression ratio measures the amount of time within an interval spent in the suppressed state.[12] This ratio increases as the brain becomes increasingly inactive until the brain's EEG signal flatlines, represented by a burst suppression ratio equal to 1.[20] Because of the direct relationship between burst suppression ratio and brain inactivity, the ratio is an indicator of suppression intensity.[12]

Using the same binary assignments to the burst suppression pattern, another measure of the depth of burst suppression, the burst suppression probability (BSP), can be determined.[12] Mathematically, the instantaneous probability of being suppressed, is

BSR = (Total time of suppression/epoch length) × 100%.[20] where xi is the brain's suppression state at time iΔ, with Δ representing intervals for analysis, and ranges across all real numbers.[17]

Clinical benefits

Patients with a high burst suppression ratio (yellow circles) show significantly better recovery from coma (traumatic etiologies) as measured by the Glasgow Outcome Scale extended (GOSe) 6 months post-injury (histogram on vertical axis). Figure from Frohlich et al. 2021 Frontiers in Neurology.

Because the burst suppression pattern is characteristic of inactivated brains, the pattern can be used as a marker for the level of coma a patient is in, with persistence of the pattern commonly associated with poor prognosis.[17] Note, however, that there is evidence linking sedation-induced burst suppression with positive outcomes in patients recovering from coma following traumatic brain injury, suggesting a neuroprotective effect.[21] When inducing coma to protect the brain post trauma, the pattern assists in maintaining the necessary level of coma so that no further damage occurs to the brain.[13] The pattern is also used to test the ability of anesthetic arousal agents to induce emergence from comas.[17] The burst suppression pattern can also be used to track ascent into and descent out of hypothermia through observing changes in the pattern.[17]

Monitoring the burst suppression ratio aids medical personnel in adjusting suppression intensity for therapeutic purposes; however, medical personnel currently rely on visually monitoring the EEG and arbitrarily assessing the depth of burst suppression.[12] Not only is the evaluation of the EEG signal for burst suppression done manually, but also the infusion rate of anesthetic to adjust suppression intensity.[13] The introduction of machines makes maintaining proper levels of inactivity more precise through the use of algorithms. This is done through the use of measures such as burst suppression probability[12] for real-time tracking of burst suppression or brain–machine interfaces to automate maintaining proper levels of inactivity.[13]

References

  1. ^ a b Ching, S.; Purdon, P. L.; Vijayan, S.; Kopell, N. J.; Brown, E. N. (7 February 2012). "A neurophysiological-metabolic model for burst suppression". Proceedings of the National Academy of Sciences. 109 (8): 3095–3100. Bibcode:2012PNAS..109.3095C. doi:10.1073/pnas.1121461109. PMC 3286963. PMID 22323592.
  2. ^ a b c Hofmeijer, Jeannette; Tjepkema-Cloostermans, Marleen C.; van Putten, Michel J.A.M. (October 2013). "Burst-suppression with Identical Bursts: a distinct EEG pattern with poor outcome in postanoxic coma" (PDF). Clinical Neurophysiology. 125 (5): 947–954. doi:10.1016/j.clinph.2013.10.017. PMID 24286857. S2CID 5101630.
  3. ^ Niedermeyer, E (December 2009). "The burst-suppression electroencephalogram". American Journal of Electroneurodiagnostic Technology. 49 (4): 333–41. doi:10.1080/1086508X.2009.11079736. PMID 20073416. S2CID 8752000.
  4. ^ a b c d Amzica, Florin (1 December 2009). "Basic physiology of burst-suppression". Epilepsia. 50: 38–39. doi:10.1111/j.1528-1167.2009.02345.x. PMID 19941521.
  5. ^ a b c d Liley, David T. J.; Walsh, Matthew (2013). "The Mesoscopic Modeling of Burst Suppression during Anesthesia". Frontiers in Computational Neuroscience. 7: 46. doi:10.3389/fncom.2013.00046. PMC 3639728. PMID 23641211.
  6. ^ Doubovikov, Evan D.; Serdyukova, Natalya A.; Greenberg, Steven B.; Gascoigne, David A.; Minhaj, Mohammed M.; Aksenov, Daniil P. (September 2023). "Electric Field Effects on Brain Activity: Implications for Epilepsy and Burst Suppression". Cells. 12 (18): 2229. doi:10.3390/cells12182229. ISSN 2073-4409. PMC 10527339. PMID 37759452.
  7. ^ Aksenov, Daniil P.; Miller, Michael J.; Dixon, Conor J.; Wyrwicz, Alice M. (June 2019). "The effect of sevoflurane and isoflurane anesthesia on single unit and local field potentials". Experimental Brain Research. 237 (6): 1521–1529. doi:10.1007/s00221-019-05528-9. ISSN 1432-1106. PMC 6526065. PMID 30919011.
  8. ^ a b Tétrault, Samuel; Chever, Oana; Sik, Attila; Amzica, Florin (1 October 2008). "Opening of the blood–brain barrier during isoflurane anaesthesia". European Journal of Neuroscience. 28 (7): 1330–1341. doi:10.1111/j.1460-9568.2008.06443.x. PMID 18973560. S2CID 28555021.
  9. ^ a b c Steriade, M; Amzica, F; Contreras, D (January 1994). "Cortical and thalamic cellular correlates of electroencephalographic burst-suppression". Electroencephalography and Clinical Neurophysiology. 90 (1): 1–16. doi:10.1016/0013-4694(94)90108-2. PMID 7509269.
  10. ^ Ferron, JF; Kroeger, D; Chever, O; Amzica, F (Aug 5, 2009). "Cortical inhibition during burst suppression induced with isoflurane anesthesia". The Journal of Neuroscience. 29 (31): 9850–60. doi:10.1523/jneurosci.5176-08.2009. PMC 6666595. PMID 19657037.
  11. ^ Kroeger, Daniel; Florea, Bogdan; Amzica, Florin; Dickson, Clayton T. (18 September 2013). "Human Brain Activity Patterns beyond the Isoelectric Line of Extreme Deep Coma". PLOS ONE. 8 (9): e75257. Bibcode:2013PLoSO...875257K. doi:10.1371/journal.pone.0075257. PMC 3776755. PMID 24058669.
  12. ^ a b c d e f g h Brandon Westover, M.; Shafi, Mouhsin M.; Ching, ShiNung; Chemali, Jessica J.; Purdon, Patrick L.; Cash, Sydney S.; Brown, Emery N. (1 September 2013). "Real-time segmentation of burst suppression patterns in critical care EEG monitoring" (PDF). Journal of Neuroscience Methods. 219 (1): 131–141. doi:10.1016/j.jneumeth.2013.07.003. hdl:1721.1/102246. PMC 3939433. PMID 23891828.
  13. ^ a b c d Shanechi, Maryam M.; Chemali, Jessica J.; Liberman, Max; Solt, Ken; Brown, Emery N.; Sporns, Olaf (31 October 2013). "A Brain–Machine Interface for Control of Medically-Induced Coma". PLOS Computational Biology. 9 (10): e1003284. Bibcode:2013PLSCB...9E3284S. doi:10.1371/journal.pcbi.1003284. PMC 3814408. PMID 24204231.
  14. ^ a b Lewis, L. D.; Ching, S.; Weiner, V. S.; Peterfreund, R. A.; Eskandar, E. N.; Cash, S. S.; Brown, E. N.; Purdon, P. L. (25 July 2013). "Local cortical dynamics of burst suppression in the anaesthetized brain". Brain. 136 (9): 2727–2737. doi:10.1093/brain/awt174. PMC 3754454. PMID 23887187.
  15. ^ Akrawi, WP; Drummond, JC; Kalkman, CJ; Patel, PM (January 1996). "A comparison of the electrophysiologic characteristics of EEG burst-suppression as produced by isoflurane, thiopental, etomidate, and propofol". Journal of Neurosurgical Anesthesiology. 8 (1): 40–6. doi:10.1097/00008506-199601000-00010. PMID 8719192.
  16. ^ a b c d Bhattacharyya, Sourya; Biswas, Arunava; Mukherjee, Jayanta; Majumdar, Arun Kumar; Majumdar, Bandana; Mukherjee, Suchandra; Singh, Arun Kumar (1 November 2013). "Detection of artifacts from high energy bursts in neonatal EEG". Computers in Biology and Medicine. 43 (11): 1804–1814. doi:10.1016/j.compbiomed.2013.07.031. PMID 24209926.
  17. ^ a b c d e f Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L; Solt, Ken; Brown, Emery N (1 October 2013). "Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression". Journal of Neural Engineering. 10 (5): 056017. Bibcode:2013JNEng..10e6017C. doi:10.1088/1741-2560/10/5/056017. PMC 3793904. PMID 24018288.
  18. ^ a b Lee, Jaeyun; Song, Woo-Jin; Lee, Hyang-Woon; Shin, Hyun-Chool (2016). "Novel Burst Suppression Segmentation in the Joint Time-Frequency Domain for EEG in Treatment of Status Epilepticus". Computational and Mathematical Methods in Medicine. 2016: 2684731. doi:10.1155/2016/2684731. PMC 5107253. PMID 27872655.
  19. ^ Lee, Jaeyun; Shin, Hyun-Chool (2019). "Burst Suppression Segmentation of EEG Using Adaptive Binarization in Time and Frequency Domains". IEEE Access. 7: 54550–54561. Bibcode:2019IEEEA...754550L. doi:10.1109/ACCESS.2019.2910869.
  20. ^ a b Vijn, P. C.; Sneyd, J. R. (1 September 1998). "I.v. anaesthesia and EEG burst suppression in rats: bolus injections and closed-loop infusions". British Journal of Anaesthesia. 81 (3): 415–421. doi:10.1093/bja/81.3.415. PMID 9861133.
  21. ^ Frohlich, Joel; Johnson, Micah A.; McArthur, David L.; Lutkenhoff, Evan S.; Dell'Italia, John; Real, Courtney; Shrestha, Vikesh; Spivak, Norman M.; Ruiz Tejeda, Jesús E.; Vespa, Paul M.; Monti, Martin M. (2021). "Sedation-Induced Burst Suppression Predicts Positive Outcome Following Traumatic Brain Injury". Frontiers in Neurology. 12: 750667. doi:10.3389/fneur.2021.750667. ISSN 1664-2295. PMC 8727767. PMID 35002918.

Read other articles:

Gentlemen's clubs in India were primarily created by the British during the British Raj, however several were created after the independence of India mainly as a legacy of the empire. They were mostly built in urban cities, like Bangalore, Calcutta, Bombay, Delhi, Karachi, Lahore, Madras etc; where British Army/Civil officers went to rest after long hours of work. Clubs Bengal United Service Club, c. 1905List of Gentlemen's club in India established before partition 1947; during Britis...

 

 

1st episode of the 1st season of The United States Steel Hour P.O.W.The United States Steel Hour episodeRichard Kiley and Gary MerrillEpisode no.Season 1Episode 1Directed byAlex SegalWritten byDavid DavidsonFeatured musicBernard GreenOriginal air dateOctober 27, 1953 (1953-10-27)Guest appearances Richard Kiley as Sgt. Lucky Dover Gary Merrill as Major E. E. Mead Brian Keith as Sgt. Iron Man Bonsell Episode chronology ← Previous— Next →Hope for a Harvest...

 

 

Bendera Kurdistan Nama Alaya Rengîn (Bendera Penuh Warna)[1] (juga disebut Boushera Zere) Pemakaian Bendera nasional Perbandingan 2:3 Dipakai 1920 diadopsi oleh Masyarakat Organisasi Sosial Kurdi sebagai bendera nasional.[2] 1927–1930 oleh Republik Ararat 17 Desember 1945 oleh Republik Kurdistan 1992 oleh Republik Kurdi Lachin sejak 1992 oleh Kurdistan Irak Rancangan Merah, Kuning, Hijau dan Putih dengan matahari (Rozh Roj Roush) memiliki 21 sudut, dengan ukuran dan bentuk...

This article is about rational protein design. For the broader engineering of proteins, see Protein engineering. Protein design is the rational design of new protein molecules to design novel activity, behavior, or purpose, and to advance basic understanding of protein function.[1] Proteins can be designed from scratch (de novo design) or by making calculated variants of a known protein structure and its sequence (termed protein redesign). Rational protein design approaches make prote...

 

 

Ujung TandukDesaPeta lokasi Desa Ujung TandukNegara IndonesiaProvinsiSumatera UtaraKabupatenTobaKecamatanLagubotiKode pos22381Kode Kemendagri12.12.02.2007 Luas04,70 km²Jumlah penduduk948 jiwa (2016)Kepadatan201,70 jiwa/km² Ujung Tanduk adalah salah satu desa di Kecamatan Laguboti, Kabupaten Toba, Provinsi Sumatera Utara, Indonesia. Pemerintahan Kepala Desa Ujung Tanduk pada tahun 2021 adalah Anton Sinurat.[1] Desa Ujung Tanduk terdiri dari tujuh dusun, yaitu: Barapangko Parsopo...

 

 

Pour les articles homonymes, voir Abelin. Pierre Abelin Pierre Abelin en 1952. Fonctions Député français 20 octobre 1975 – 20 novembre 1975(1 mois) Élection 19 octobre 1975 Circonscription 2e de la Vienne Législature Ve (Cinquième République) Groupe politique RDS Prédécesseur Robert Gourault (décès) Successeur Jean-Jacques Fouqueteau 25 novembre 1962 – 27 juin 1974(11 ans, 7 mois et 2 jours) Élection 25 novembre 1962 Réélection 12 mars 196730 juin 196811...

Gay American murder victim (1976–1998) Matt Shepard redirects here. For the sportscaster, see Matt Shepard (sportscaster). Matthew ShepardBornMatthew Wayne Shepard(1976-12-01)December 1, 1976Casper, Wyoming, U.S.DiedOctober 12, 1998(1998-10-12) (aged 21)Fort Collins, Colorado, U.S.Cause of deathMurder (blunt force trauma)Resting placeWashington National CathedralAlma materUniversity of WyomingParentsDennis ShepardJudy Shepard Matthew Wayne Shepard (December 1, 1976 – O...

 

 

Educational video game console Not to be confused with PICO 4. Sega PicoAlso known asKids Computer PicoManufacturerSega ToysTypeVideo game consoleGenerationFourth generation eraRelease dateJP: June 1993NA: November 1994EU: 1994KOR: 1995Introductory priceJP¥13,440US$139CN¥690US$49.95 (Majesco)DiscontinuedEU: 1998NA: February 1998KOR: 2002JP: 2005Units soldJP: 3.4 millionNA: 400,000 (as of January 1996)MediaStoryware (Cartridge)CPUMotorola 68000 @ 7.6 MHzMemory64 KB RAM, 64 KB ...

 

 

River in Panama Chagres RiverThe Chagres River as seen from the highway between Panama City and Colon in 1986Location of mouthNative nameRío Chagres (Spanish)LocationCountryPanamaPhysical characteristicsSource  • locationChagres National Park, Panamá Province, Panama • coordinates9°24′N 79°17′W / 9.400°N 79.283°W / 9.400; -79.283 Mouth  • locationChagres, Colón Province, Panama •&...

Hanna HasyimLahir13 Maret 1977 (umur 47)Jakarta, IndonesiaKebangsaanIndonesiaPekerjaanPemeranTahun aktif1999—sekarang Hanna Hasyim lahir (13 Maret, 1977) adalah pemeran asal Indonesia. Kehidupan Awal Hanna Hasyim ini lahir di Jakarta pada 13 Maret 1977. Ia merupakan artis peran yang terkenal lewat sinetron Cinta bersama Desy Ratnasari dan Primus Yustisio pada tahun 1999. Memasuki pertengahan 2000-an ia membintangi sejumlah sinetron produksi SinemArt[1] Filmografi Film Tah...

 

 

Notre-Dame a Reims Cattedrale luterana di Helsinki Cattedrale del Wawel a Cracovia Una cattedrale è la chiesa cristiana più importante di una diocesi, di cui costituisce il centro liturgico e spirituale, e che contiene la cattedra del vescovo della diocesi. Indice 1 Terminologia 2 Storia e organizzazione 3 Chiesa cattolica 3.1 Capitolo della cattedrale 4 Note 5 Bibliografia 6 Voci correlate 7 Altri progetti 8 Collegamenti esterni Terminologia La locuzione chiesa cattedrale (ecclesia cathedr...

 

 

Typhoon season in the Western Pacific Ocean 1999 Pacific typhoon seasonSeason summary mapSeasonal boundariesFirst system formedJanuary 3, 1999Last system dissipatedDecember 16, 1999Strongest stormNameBart • Maximum winds165 km/h (105 mph)(10-minute sustained) • Lowest pressure930 hPa (mbar) Seasonal statisticsTotal depressions45Total storms20Typhoons5 (record low)Super typhoons1 (unofficial)Total fatalities976Total damage$18.36 billion (1999 USD)Related articles 1999 A...

Australian chef David ThompsonDavid Thompson addresses a plenary session at the Oxford Symposium on Food and Cookery, 2012BornSydney, AustraliaCulinary careerCooking styleThai cuisine Current restaurant(s) Long Chim Perth, Long Chim Sydney, Aaharn Hong Kong, Aksorn Bangkok, Chop Chop Cook Shop Previous restaurant(s) Darley Street Thai, Sailor’s Thai, Nahm London, Nahm Bangkok, Long Chim Singapore, Long Chim Melbourne and Long Chim Seoul David Thompson (Thai: เดวิด ทอมป์�...

 

 

Siswa SMAKBO Sekolah Menengah Analisis Kimia Bogor (SMAKBO)InformasiDidirikan12 September 1955JenisNegeri, NonasramaAkreditasikeputusan Menteri Perindustrian No. 234/M/SK/6/1985Kepala SekolahDwika Riandari, M.SiJurusan atau peminatanKimia AnalisisJumlah siswarata-rata 1057 siswa / tahunAlamatLokasiJalan Binamarga 1 Baranangsiang, Bogor, Jawa Barat, IndonesiaTel./Faks.0251-8323138Situs webwww.smakbo.sch.idLain-lainLulusan6.030 (2013)Moto SMK-Sekolah Menengah Analis Kimia Bogor (...

 

 

Benoît BadiashileNazionalità Francia Altezza194 cm Peso75 kg Calcio RuoloDifensore Squadra Chelsea CarrieraGiovanili 2007-2008 Limoges2008-2016 Malesherbes2016-2018 Monaco Squadre di club1 2018-2023 Monaco106 (6)2023- Chelsea29 (1) Nazionale 2016 Francia U-165 (0)2017-2018 Francia U-176 (0)2018 Francia U-182 (0)2018-2019 Francia U-1918 (0)2020-2022 Francia U-2116 (0)2022- Francia2 (0) 1 I due numeri indicano le presenze e le reti segnate, per le sole parti...

Multinational organization African Cashew AllianceAbbreviationACAFormation2006; 18 years ago (2006)[1]PurposeGrowing Africa's cashew industryPresidentOtunba Tola Faseru[2]Websitehttp://www.africancashewalliance.com/en The African Cashew Alliance (ACA) is an international organization dedicated to promoting the growth of the cashew industry in Africa. The ACA provides African cashew farmers with technical assistance and best practices, facilitates foreign inve...

 

 

2012年乌克兰议会选举 ← 2007 2012年10月28日(12月15日在7个单一议席选区举行重选) 2014 → 乌克兰最高拉达全部450个议席獲得過半多數需226个席位   第一大黨 第二大黨 第三大黨   领袖 米克拉·阿扎罗夫 尤利娅·季莫申科 维塔利·克利奇科 政党 地区党 全乌克兰祖国联盟 突击党 上届结果 34.4%, 175席 30.7%, 156席(为BYuT) 未参加 赢得席次 187席 102 40 席次差额 ...

 

 

Kaspars Gorkšs Informasi pribadiNama lengkap Kaspars GorkšsTanggal lahir 6 November 1981 (umur 42)Tempat lahir Riga, RSS Latvia, USSR (kini Republik Latvia)Tinggi 1,92 m (6 ft 3+1⁄2 in)Posisi bermain BekInformasi klubKlub saat ini ErgotelisNomor 25Karier senior*Tahun Tim Tampil (Gol)1997–2002 Auda Rīga 77 (9)2002–2004 Öster 32 (1)2005 Assyriska Föreningen 23 (0)2005–2006 Ventspils 28 (5)2006–2008 Blackpool 50 (6)2008–2011 Queens Park Rangers 114 (6)20...

Guerra dei Nasi Foratiparte delle guerre indianeCapi Joseph, Specchio e Uccello Bianco nella primavera del 1877Datagiugno-ottobre 1877 LuogoOregon, Idaho, Wyoming e Montana EsitoVittoria statunitense Schieramenti Stati Uniti d'AmericaNasi ForatiPalus ComandantiOliver O. HowardJohn GibbonNelson MilesSamuel Davis SturgisCapo GiuseppeSpecchio (m.)White BirdOllokot (m.)Toohoolhoolzote (m.)Poker Joe (m.) (Alce Magro)Eco Rosso (Hahtalekin)Testa Calva (Husishusis Kute) Effettivi1000-1500 soldat...

 

 

Burmese (Myanmar) government agency responsible for military and national defense affairs Ministry of Defenceကာကွယ်ရေး၀န်ကြီးဌာနKakweye Wungyi HtanaSeal of the Ministry [1]Flag of the Ministry [2]Ministry overviewTypeMinistryJurisdictionGovernment of MyanmarHeadquartersNaypyidaw, MyanmarAnnual budgetUS$2.289 billion (2013)Minister responsibleTin Aung San, Union MinisterChild agenciesMyanmar Economic CorporationUnion of Myanmar Economic Hol...