Brouwer–Heyting–Kolmogorov interpretation

In mathematical logic, the Brouwer–Heyting–Kolmogorov interpretation, or BHK interpretation, of intuitionistic logic was proposed by L. E. J. Brouwer and Arend Heyting, and independently by Andrey Kolmogorov. It is also sometimes called the realizability interpretation, because of the connection with the realizability theory of Stephen Kleene. It is the standard explanation of intuitionistic logic.[1]

The interpretation

The interpretation states what is intended to be a proof of a given formula. This is specified by induction on the structure of that formula:

  • A proof of is a pair where is a proof of and is a proof of .
  • A proof of is either where is a proof of or where is a proof of .
  • A proof of is a function[clarify] that converts a proof of into a proof of .
  • A proof of is a pair where is an element of and is a proof of .
  • A proof of is a function that converts an element of into a proof of .
  • The formula is defined as , so a proof of it is a function that converts a proof of into a proof of .
  • There is no proof of , the absurdity or bottom type (nontermination in some programming languages).

The interpretation of a primitive proposition is supposed to be known from context. In the context of arithmetic, a proof of the formula is a computation reducing the two terms to the same numeral.

Kolmogorov followed the same lines but phrased his interpretation in terms of problems and solutions. To assert a formula is to claim to know a solution to the problem represented by that formula. For instance is the problem of reducing to ; to solve it requires a method to solve problem given a solution to problem .

Examples

The identity function is a proof of the formula , no matter what P is.

The law of non-contradiction expands to :

  • A proof of is a function that converts a proof of into a proof of .
  • A proof of is a pair of proofs <a, b>, where is a proof of P, and is a proof of .
  • A proof of is a function that converts a proof of P into a proof of .

Putting it all together, a proof of is a function that converts a pair <a, b> – where is a proof of , and is a function that converts a proof of into a proof of – into a proof of . There is a function that does this, where , proving the law of non-contradiction, no matter what P is.

Indeed, the same line of thought provides a proof for the modus ponens rule as well, where is any proposition.

On the other hand, the law of excluded middle expands to , and in general has no proof. According to the interpretation, a proof of is a pair <a, b> where a is 0 and b is a proof of , or a is 1 and b is a proof of . Thus if neither nor is provable then neither is .

Definition of absurdity

It is not, in general, possible for a logical system to have a formal negation operator such that there is a proof of "not" exactly when there isn't a proof of ; see Gödel's incompleteness theorems. The BHK interpretation instead takes "not" to mean that leads to absurdity, designated , so that a proof of is a function converting a proof of into a proof of absurdity.

A standard example of absurdity is found in dealing with arithmetic. Assume that 0 = 1, and proceed by mathematical induction: 0 = 0 by the axiom of equality. Now (induction hypothesis), if 0 were equal to a certain natural number n, then 1 would be equal to n + 1, (Peano axiom: Sm = Sn if and only if m = n), but since 0 = 1, therefore 0 would also be equal to n + 1. By induction, 0 is equal to all numbers, and therefore any two natural numbers become equal.

Therefore, there is a way to go from a proof of 0 = 1 to a proof of any basic arithmetic equality, and thus to a proof of any complex arithmetic proposition. Furthermore, to get this result it was not necessary to invoke the Peano axiom that states that 0 is "not" the successor of any natural number. This makes 0 = 1 suitable as in Heyting arithmetic (and the Peano axiom is rewritten 0 = Sn → 0 = S0). This use of 0 = 1 validates the principle of explosion.

Definition of function

The BHK interpretation will depend on the view taken about what constitutes a function that converts one proof to another, or that converts an element of a domain to a proof. Different versions of constructivism will diverge on this point.

Kleene's realizability theory identifies the functions with the computable functions. It deals with Heyting arithmetic, where the domain of quantification is the natural numbers and the primitive propositions are of the form x = y. A proof of x = y is simply the trivial algorithm if x evaluates to the same number that y does (which is always decidable for natural numbers), otherwise there is no proof. These are then built up by induction into more complex algorithms.

If one takes lambda calculus as defining the notion of a function, then the BHK interpretation describes the correspondence between natural deduction and functions.

See also

Notes

References

  • Troelstra, A. (1991). "History of Constructivism in the Twentieth Century" (PDF).
  • Troelstra, A. (2003). "Constructivism and Proof Theory (draft)". CiteSeerX 10.1.1.10.6972.

Read other articles:

Copparo commune di Italia Tempat categoria:Articles mancats de coordenades Negara berdaulatItaliaRegion di ItaliaEmilia-RomagnaProvinsi di ItaliaProvinsi Ferrara NegaraItalia Ibu kotaCopparo PendudukTotal15.673  (2023 )GeografiLuas wilayah157,01 km² [convert: unit tak dikenal]Ketinggian7 m Berbatasan denganRiva del Po (en) Ferrara Tresignana (en) Jolanda di Savoia Informasi tambahanKode pos44034 Zona waktuUTC+1 UTC+2 Kode telepon0532 ID ISTAT038007 Kode kadaster ItaliaC980 Lain-lai...

 

Augit yang ditambang di Gunung Muhabura, Rwanda Augite adalah sebuah mineral pembentuk bebatuan yang biasanya terjadi pada bebatuan beku berjenis mafik dan menengah seperti andesit, basal, diorit, dan gabro. Augite memiliki sebuah rumus kimiawi (Ca,Na) (Mg,Fe,Al,Ti) (Si,Al)2O6.[1][2] Ciri Khas Augite Augite jika ditembus sebuah cahaya akan memiliki beberapa warna yakni coklat, hijau, atau hitam. Terkadang dapat menunjukkan dua arah pembelahan yang berbeda yang berpotongan sedi...

 

Process of monitoring and controlling the movement of a craft or vehicle from one place to another For other uses, see Navigation (disambiguation). A navigation system on an oil tanker Navigation[1] is a field of study that focuses on the process of monitoring and controlling the movement of a craft or vehicle from one place to another.[2] The field of navigation includes four general categories: land navigation,[3] marine navigation, aeronautic navigation, and space n...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: WMXC – news · newspapers · books · scholar · JSTOR (January 2009) (Learn how and when to remove this template message) Radio station in Mobile, AlabamaWMXC Mobile, AlabamaBroadcast areaMobile - Pensacola - Gulf CoastFrequency99.9 MHz (HD Radio)BrandingMix 99.9P...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Dalam nama Tionghoa ini, nama keluarganya adalah Cao. Cao ZhongrongCao Zhongrong (kanan) lawan Eli BremerInformasi pribadiLahir3 November 1981 (umur 42)Tinggi18 m (59 ft 1⁄2 in)Berat73 kg (161 pon) (161 pon) Olahrag...

 

جورج جاك دانتون جورج جاك دانتون معلومات شخصية اسم الولادة جورج جاك دانتون الميلاد 26 أكتوبر 1759ماريسز سور ابوي ، فرنسا الوفاة 5 أبريل ، 1794باريس ، فرنسا سبب الوفاة قطع الرأس  مكان الاعتقال قصر لوكسمبورغ  الجنسية فرنسي الديانة كاثوليك عضو في لجنة السلامة العامة  مناصب �...

Теорема Ро́лля (теорема о нуле производной) — теорема математического анализа, входящая, вместе с теоремами Лагранжа и Коши, в число так называемых «теорем о среднем значении». Теорема утверждает, что Если вещественная функция f (x), непрерывная на отрезке [ a , b ] {\displaystyle [a,b]...

 

Deputi Bidang Restrukturisasi dan Pengembangan Usaha Kementerian Badan Usaha Milik Negara Republik IndonesiaSusunan organisasiDeputiAloysius Kiik Ro [1]Kantor pusatJalan Medan Merdeka Selatan No. 13 Jakarta 10110 IndonesiaSitus webwww.bumn.go.id Deputi Bidang Restrukturisasi dan Pengembangan Usaha merupakan unsur pelaksana pada Kementerian Badan Usaha Milik Negara Republik Indonesia pada Kabinet Kerja (2014–2019) yang berada di bawah dan bertanggung jawab kepada Menteri Badan U...

 

The 2017 European Women's U-17 Handball Championship was the 13th edition, which took place in Slovakia. Germany won the first title by defeating Norway in the final.[1] 2017 European U-17 Handball ChampionshipTournament detailsHost country SlovakiaDatesAugust 10–August 20Teams16 (from 1 confederation)Final positionsChampions GermanyRunner-up NorwayThird place HungaryFourth place FranceTournament statisticsTop scorer(s) Zoe Sprengers (NED)Best...

马来西亚—英国关系 马来西亚 英国 代表機構马来西亚驻英国高级专员公署(英语:High Commission of Malaysia, London)英国驻马来西亚高级专员公署(英语:British High Commission, Kuala Lumpur)代表高级专员 阿末拉席迪高级专员 查尔斯·海伊(英语:Charles Hay (diplomat)) 马来西亚—英国关系(英語:Malaysia–United Kingdom relations;馬來語:Hubungan Malaysia–United Kingdom)是指马来西亚与英国�...

 

هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد  القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...

 

تينوفوفير/إمتريسيتابين   مزيج من تينوفوفير إمتريسيتابين مضاهئ للنوكليوتيد إمتريسيتابين مثبط المنتسخة العكسية [الإنجليزية] مضاهئ للنوكليوزيد اعتبارات علاجية فئة السلامة أثناء الحمل B (الولايات المتحدة) طرق إعطاء الدواء فموي معرّفات ك ع ت J05J05AR03 AR03 بوب كيم CID 11954236 كيم �...

Eurovision Song Contest 2017Country GreeceNational selectionSelection processArtist: Internal selectionSong: Ellinikós Telikós 2017Selection date(s)Artist: 13 January 2017Song: 6 March 2017Selected entrantDemySelected songThis Is LoveSelected songwriter(s)Dimitris KontopoulosRomy PapadeaJohn BallardFinals performanceSemi-final resultQualified (10th, 115 points)Final result19th, 77 pointsGreece in the Eurovision Song Contest ◄2016 • 2017 • 2018�...

 

Miiko TakaMiiko Taka pada tahun 1958Lahir24 Juli 1925 (umur 98)Seattle, Washington, ASNama lainBetty IshimotoTahun aktif1957–1982Suami/istriDale Ishimoto (1944–1958)Lennie Blondheim (1963–sekarang) Miiko Taka (高美以子code: ja is deprecated , Taka Miiko) (nama lahir Miiko Shikata[1] lahir 24 Juli 1925 – 2023), adalah seorang aktris Jepang Amerika. Ia dikenal karena beradu peran dengan Marlon Brando sebagai Hana-ogi dalam film tahun 1957 Sayonara. Referensi ...

 

Canadian ice hockey player (born 1979) Ice hockey player Nick Boynton Boynton with the Chicago Blackhawks in December 2010Born (1979-01-14) January 14, 1979 (age 45)Nobleton, Ontario, CanadaHeight 6 ft 2 in (188 cm)Weight 218 lb (99 kg; 15 st 8 lb)Position DefenceShot RightPlayed for Boston BruinsNottingham PanthersPhoenix CoyotesFlorida PanthersAnaheim DucksChicago BlackhawksPhiladelphia FlyersNHL draft 9th overall, 1997 Washington Capitals 21st overal...

Dutch aerial survey aircraft F.K.49 Role Survey aircraftType of aircraft National origin Netherlands Manufacturer Koolhoven Designer Frederick Koolhoven First flight 1935 Primary user Luchtvaart Afdeling Number built 4, plus 3 unfinished The Koolhoven F.K.49 was a photographic survey aircraft built in the Netherlands in 1935. Design and development The F.K.48 was a high-wing cantilever monoplane of conventional design with twin engines carried in nacelles on the leading edges. Usually fi...

 

National highway in India This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: National Highway 327 India – news · newspapers · books · scholar · JSTOR (May 2016) (Learn how and when to remove this message) National Highway 327Map of National Highway 327 in redRoute informationPart of AH2 Length32 km...

 

Cet article est une ébauche concernant une localité chinoise. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Khorgas 霍尔果斯 Poste frontière avec le Kazakhstan à Khorgas Administration Pays Chine Province ou région autonome Xinjiang Préfecture Préfecture autonome kazakhe d'Ili Subdivision Xian de Huocheng Statut administratif Ville-district Indicatif +86 (0)999 Immatriculation 新F Démographie 85&#...

Failed 1923 Nazi coup attempt in Germany For the album by Doug Stanhope, see Beer Hall Putsch (album). Munich PutschBeer Hall PutschPart of political violence in Germany (1918–1933)Nazis at the Marienplatz in Munich during the PutschDate8–9 November 1923LocationMunich, Bavaria, Weimar Republic48°07′48″N 11°35′31″E / 48.130°N 11.592°E / 48.130; 11.592ActionHitler and the Nazi Party planned to seize Munich and use the city as a base for a march against Ge...

 

President of CzechoslovakiaCzech: Prezident ČeskoslovenskaSlovak: Prezident Česko-SlovenskaPresidential Standard (1918–1960)Longest servingTomáš Masaryk14 November 1918 – 14 December 1935StyleHis ExcellencyResidencePrague CastleBratislava Castle(1969–92)AppointerFederal AssemblyFormation14 November 1918; 105 years ago (1918-11-14)First holderTomáš MasarykFinal holderVáclav HavelAbolished20 July 1992; 32 years ago (1992-07-20)Superseded by Pres...