The structure to the right of branched chain amino acid aminotransferase was found using X-ray diffraction with a resolution of 2.20 Å. The branched-chain amino acid aminotransferase found in this image was isolated from mycobacteria. This protein is made up of two identical polypeptide chains, totaling 372 residues.[2]
The biological function of branched-chain amino acid aminotransferases is to catalyse the synthesis or degradation of the branched chain amino acidsleucine, isoleucine, and valine.[3] In humans, branched chain amino acids are essential and are degraded by BCATs.
Structure and function
In humans, BCATs are homodimers composed of two domains, a small subunit (residues 1-170) and a large subunit (residues 182-365). These subunits are connected by a short, looping connecting region (residues 171-181).[4] Both subunits consist of four alpha-helices and a beta-pleated sheet.[5] Structural studies of human branched-chain amino acid aminotransferases (hBCAT) revealed that the peptide bonds in both isoforms are all trans except for the bond between residues Gly338-Pro339.[5] The active site of the enzyme lies in the interface between the two domains.[5] Like other transaminase enzymes (as well as many enzymes of other classes), BCATs require the cofactor pyridoxal-5'-phosphate (PLP) for activity. PLP has been found to change the conformation of aminotransferase enzymes, locking the conformation of the enzyme via a Schiff base (imine) linkage in a reaction between a lysine residue of the enzyme and the carbonyl group of the cofactor.[6] This conformational change allows the substrates to bind to the active site pocket of the enzymes.
Active site
In addition to the Schiff base linkage, PLP is anchored to the active site of the enzyme via hydrogen bonding at the Tyr 207 and Glu237 residues. In addition, the phosphate oxygen atoms on the PLP molecule interact with the Arg99, Val269, Val270, and Thr310 residues.[5] Mammalian BCATs show a unique structural CXXC motif (Cys315 and Cys318) sensitive to oxidizing agents[7] and modulated through S-nitrosation,[8] a post-translational modification that regulates cell signaling.[9] Modification of these two cysteine residues via oxidation (in vivo/vitro) or titration (in vitro) has been found to inhibit enzyme activity,[4] indicating that the CXXC motif is crucial to optimal protein folding and function.[10] The sensitivity of both isoenzymes to oxidation make them potential biomarkers for the redox environment within the cell.[11] Although the CXXC motif is present only in mammalian BCATs, the surrounding amino acid residues were found to be highly conserved in both prokaryotic and eukaryotic cells.[12] Conway, Yeenawar et al. found that the mammalian active site contains three surfaces: surface A (Phe75, Tyr207 and Thr240), surface B (Phe30, Tyr141, and Ala314), and surface C (Tyr70, Leu153 and Val155, located on the opposite domain) that bind to the substrate in a Van der Waals-type interaction with the branched side chains of the amino acid substrates.[12]
Isoforms
Mammalian
BCATs in mammals catalyze the first step in branched-chain amino acid metabolism, a reversible transamination followed by the oxidative decarboxylation of the transamination products α-ketoisocaproate, α-keto-β-methylvalerate, and α-ketoisovalerate to isovaleryl-CoA, 3-methylbutyryl-CoA, and isobutyryl-CoA, respectively.[13] This reaction regulates metabolism of amino acids and is a crucial step in nitrogen shuttling throughout the whole body.[14] Branched-chain amino acids (BCAA) are ubiquitous in many organisms, comprising 35% of all proteins and 40% of the amino acids required in all mammals.[13] Mammalian BCATs come in two isoforms: cytosolic (BCATc) and mitochondrial (BCATm). The isoforms share 58% homology,[15] but vary in location and catalytic efficiency.
BCATc
Cytosolic branched-chain amino acid aminotransferases are the less common of the two isoforms, found in the cytoplasm of mammalian cells almost exclusively throughout the nervous system.[15] Although BCATc are expressed only in a few adult tissues, they are expressed at a high level during embryogenesis.[16] The cytosolic isoform has a higher turnover rate, approximately 2-5 times faster than the mitochondrial isoform.[17] BCATc has been found to be more stable than BCATm, with evidence suggesting 2 sulfide bonds. The cytosolic isozyme demonstrates no loss in activity upon titration of one thiol group[17] hBCATc demonstrates a lower redox potential (approximately 30 mV) than hBCATm.[11] Human BCATc is encoded by BCAT1[18]
BCATm
Mitochondrial branched-chain amino acid aminotransferases are the more ubiquitous of the two isoforms, present in all tissues in the mitochondria of the cell.[8] Pancreatic acinar tissue has been found to carry the highest levels of BCATm in the body[19] In addition, two homologs to normal BCATm have been found. One homolog is found in placental tissue, and the other co-represses thyroid hormone nuclear receptors.[16][20] BCATm is more sensitive to the redox environment of the cell, and can be inhibited by nickel ions even if the environment is reducing. BCATm has been found to form no disulfide bonds, and titration of two -SH groups with 5,5'- dithiobis(2-nitrobenzoic acid) eliminates enzyme activity completely in the case of the BCATm isozyme.[17] In humans, BCATm is encoded by the BCAT2 gene.[21]
Plant isoforms
Plant BCATs have also been identified, but vary between species in terms of number and sequence. In studies of Arabidopsis thaliana (thale cress), six BCAT isoforms have been identified that share between 47.5-84.1% homology with each other. These isoforms also share around 30% sequence homology to the human and yeast (Saccharomyces cerevisiae) isoforms.[22] BCAT1 is located in the mitochondria, BCAT2, 3, and 5 are located in chloroplasts, and BCAT4 and 6 are located in the cytoplasm of A. thaliana.[23] However, studies of BCATs in Solanum tuberosum (potato) revealed two isoforms that are 683 (BCAT1) and 746 (BCAT2) bp long located primarily in chloroplasts.[24]
Bacterial isoforms
In bacteria, there is only one isoform of the BCAT enzyme. However, the structure of the enzyme is different between organisms. In Escherichia coli, the enzyme is a hexamer containing six identical subunits. Each subunit has a molecular weight of 34 kDa and is composed of 308 amino acids.[25] In contrast, Lactococcus lactis BCAT is a homodimer similar to the mammalian isoforms. Each subunit of the L. lactis BCAT is composed of 340 amino acids for a molecular weight of 38 kDa.[26]
Physiological roles
Humans
Because branched chain amino acids are crucial in the formation and function of many proteins, BCATs have many responsibilities in mammalian physiology. BCATs have been found to interact with protein disulfide isomerases, a class of enzymes that regulate cellular repair and proper protein folding.[10] The second step of branched chain amino acid metabolism (oxidative carboxylation by branched chain ketoacid dehydrogenase) stimulates insulin secretion. Loss of BCATm correlates with a loss in BCKD-stimulated insulin secretion, but has not been associated with losses in insulin secretion from other metabolic pathways.[19] BCATc regulates the mTORC1 signaling and TCR-induced glycolytic metabolism pathways during CD4+ T cell activation.[27] In the brain, BCATc regulates the amount of glutamate production for use as a neurotransmitter or for future γ-Aminobutyric acid (GABA) synthesis.[28]
Plants
BCATs also play a role in the physiology of plant species, but it has not been studied as extensively as mammalian BCATs. In Cucumis melo (melon), BCATs have been found to play a role in developing aroma volatile compounds that give melons their distinct scent and flavor.[29] In Solanum lycopersicum (tomatoes), BCATs play a role in synthesizing the branched-chain amino acids that act as electron donors in the electron transport chain. Overall, plant BCATs have catabolic and anabolic regulatory functions.[30]
Bacteria
In bacterial physiology, BCATs perform both reactions, forming both α-ketoacids and branched chain amino acids. Bacteria growing on a medium lacking the right amino acid ratios for growth must be able to synthesize branched chain amino acids in order to proliferate.[31] In Streptococcus mutans, the gram-positive bacteria that lives in human oral cavities and is responsible for tooth decay, amino acid biosynthesis/degradation has been found to regulate glycolysis and maintain the internal pH of the cell. This allows the bacteria to survive in the acidic conditions of the human oral cavity from the breakdown of carbohydrates.[32]
Uses
Synthetic organic chemistry
BCATs have been used in the synthesis of some pharmaceutical drugs as an alternative to heavy metal catalysts, which can be expensive/environmentally unfriendly. Aminotransferases (transaminases) in general have been used to create unnatural amino acids, important building blocks for peptidomimetic drugs and agricultural products. BCAT from E. coli is typically engineered to be overexpressed and extracted from whole cells to be used for chemical synthesis.[33] Aminotransferases are used because they can accomplish a typically multi-step reaction in one step, can perform reactions on a wide range of substrates, and have high regioselectivity and enantioselectivity.[34] In synthetic organic chemistry, BCATs are typically used for the conversion of L-Leucine to 2-ketoglutarate.
Drug target
The anticonvulsant gabapentin [Neurontin; 1-(aminomethyl)cyclohexaneacetic acid] is a drug often used to treat patients with neuropathic pain.[35][36][37] This neuropathic pain can be caused by a number of things, including diabetic neuropathy and postherpetic neuralgia.[38] Gabapentin is an amino acid drug structurally similar to the two neurotransmitters glutamate (synthesized by BCATs) and GABA. The drug competitively inhibits both BCAT isoforms in the brain, slowing down glutamate production.[39] Gabapentin also inhibits GABA aminotransferase (GABA-T) and glutamate dehydrogenase (GDH), two other enzymes in the glutamate and GABA metabolic pathway.
Cured meat and cheese industries
The bacteria L. lactis is the primary bacteria responsible for the ripening of cheeses, and the enzymes within the bacteria play key roles in the development of flavor, texture, and aroma profiles.[40] The branched-chain amino acid aminotransferases help to produce compounds like isovaleric acid, isobutyric acid, 2- and 3-methylbutan(al)(ol) and 2-methylpropan(al)(ol) that impart fruity or malty aromas depending on the amount of compound present.[41] Along with the aromatic aminotransferases (AraT), BCATs in L. lactis help develop the aroma/flavor resulting from volatile sulphur compounds produced during fermentation.
The bacteria Staphylococcus carnosus and Enterococcus faecalis are often used in tandem with other lactic acid bacterium to begin the meat fermentation process. BCATs in these two bacteria perform transaminations during meat fermentation, producing the corresponding α-ketoacids from amino acids. As fermentation proceeds, these α-ketoacids degrade into a class of compounds known as methyl-branched volatiles that include aldehydes, alcohols, and carboxylic acids, all of which contribute to the distinct scents and flavors of cured meats.[42]
Ideal conditions
A study of BCAT from Lactococcus lactis by Yvon, Chambellon et al., found the ideal conditions for the bacterial isozyme as follows:
pH: ~7.5
Temperature: ~35-40 °C (storage at 6 °C keeps enzyme stable for ~1 week)
Absence of carbonyl, sulfhydryl, or Cu2+ or Co2+ reagents/compounds
Enzyme catalyzes reaction best with branched chain amino acids (in order from most activity to least: isoleucine, leucine, valine)
Enzyme also shows minimal activity with methionine, cysteine, and alanine.[26]
^ abConway ME, Yennawar N, Wallin R, Poole LB, Hutson SM (July 2002). "Identification of a peroxide-sensitive redox switch at the CXXC motif in the human mitochondrial branched chain aminotransferase". Biochemistry. 41 (29): 9070–8. doi:10.1021/bi020200i. PMID12119021.
^ abcdYennawar N, Dunbar J, Conway M, Hutson S, Farber G (April 2001). "The structure of human mitochondrial branched-chain aminotransferase". Acta Crystallographica Section D. 57 (Pt 4): 506–15. doi:10.1107/s0907444901001925. PMID11264579.
^ abHull J, Hindy ME, Kehoe PG, Chalmers K, Love S, Conway ME (December 2012). "Distribution of the branched chain aminotransferase proteins in the human brain and their role in glutamate regulation". Journal of Neurochemistry. 123 (6): 997–1009. doi:10.1111/jnc.12044. PMID23043456. S2CID206088992.
^ abConway ME, Yennawar N, Wallin R, Poole LB, Hutson SM (April 2003). "Human mitochondrial branched chain aminotransferase: structural basis for substrate specificity and role of redox active cysteines". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 3rd International Symposium on Vitamin B6, PQQ, Carbonyl Catalysis and Quinoproteins. 1647 (1–2): 61–5. doi:10.1016/S1570-9639(03)00051-7. PMID12686109.
^Campbell MA, Patel JK, Meyers JL, Myrick LC, Gustin JL (October 2001). "Genes encoding for branched-chain amino acid aminotransferase are differentially expressed in plants". Plant Physiology and Biochemistry. 39 (10): 855–860. doi:10.1016/S0981-9428(01)01306-7.
^Okada K, Hirotsu K, Sato M, Hayashi H, Kagamiyama H (April 1997). "Three-dimensional structure of Escherichia coli branched-chain amino acid aminotransferase at 2.5 A resolution". Journal of Biochemistry. 121 (4): 637–41. doi:10.1093/oxfordjournals.jbchem.a021633. PMID9163511.
^Sweatt AJ, Garcia-Espinosa MA, Wallin R, Hutson SM (September 2004). "Branched-chain amino acids and neurotransmitter metabolism: expression of cytosolic branched-chain aminotransferase (BCATc) in the cerebellum and hippocampus". The Journal of Comparative Neurology. 477 (4): 360–70. doi:10.1002/cne.20200. PMID15329886. S2CID18780804.
^Engels WJ, Alting AC, Arntz MM, Gruppen H, Voragen AG, Smit G, Visser S (August 2000). "Partial purification and characterization of two aminotransferases from Lactococcus lactis subsp. cremoris B78 involved in the catabolism of methionine and branched-chain amino acids". International Dairy Journal. 10 (7): 443–452. doi:10.1016/S0958-6946(00)00068-6.
^Taylor PP, Pantaleone DP, Senkpeil RF, Fotheringham IG (October 1998). "Novel biosynthetic approaches to the production of unnatural amino acids using transaminases". Trends in Biotechnology. 16 (10): 412–8. doi:10.1016/S0167-7799(98)01240-2. PMID9807838.
^Hwang BY, Cho BK, Yun H, Koteshwar K, Kim BG (December 2005). "Revisit of aminotransferase in the genomic era and its application to biocatalysis". Journal of Molecular Catalysis B: Enzymatic. 37 (1–6): 47–55. doi:10.1016/j.molcatb.2005.09.004.
^Backonja M, Glanzman RL (January 2003). "Gabapentin dosing for neuropathic pain: evidence from randomized, placebo-controlled clinical trials". Clinical Therapeutics. 25 (1): 81–104. doi:10.1016/s0149-2918(03)90011-7. PMID12637113.
^Goldlust A, Su TZ, Welty DF, Taylor CP, Oxender DL (September 1995). "Effects of anticonvulsant drug gabapentin on the enzymes in metabolic pathways of glutamate and GABA". Epilepsy Research. 22 (1): 1–11. doi:10.1016/0920-1211(95)00028-9. PMID8565962. S2CID22622907.
^García-Cayuela T, Gómez de Cadiñanos LP, Peláez C, Requena T (October 2012). "Expression in Lactococcus lactis of functional genes related to amino acid catabolism and cheese aroma formation is influenced by branched chain amino acids". International Journal of Food Microbiology. 159 (3): 207–13. doi:10.1016/j.ijfoodmicro.2012.09.002. PMID23107499.
^Rijnen L, Yvon M, van Kranenburg R, Courtin P, Verheul A, Chambellon E, Smit G (2003-01-01). "Lactococcal aminotransferases AraT and BcaT are key enzymes for the formation of aroma compounds from amino acids in cheese". International Dairy Journal. 13 (10): 805–812. doi:10.1016/S0958-6946(03)00102-X.
^Freiding S, Ehrmann MA, Vogel RF (April 2012). "Comparison of different IlvE aminotransferases in Lactobacillus sakei and investigation of their contribution to aroma formation from branched chain amino acids". Food Microbiology. Fermented MeatsFermented Meats. 29 (2): 205–14. doi:10.1016/j.fm.2011.07.008. PMID22202874.
48-я церемония награждения премии «Оскар» Общие сведения Дата 29 марта 1976 года Место проведения Dorothy Chandler Pavilion[en], Лос-Анджелес, Калифорния, США Ведущие Уолтер Маттау, Роберт Шоу, Джордж Сигал, Голди Хоун, Джин Келли Продюсер Говард У. Кох[en] Режиссёр Марти Пасетта[en] Трансляци...
American politician Toby MorrisMember of the U.S. House of Representativesfrom Oklahoma's 6th districtIn officeJanuary 3, 1947 – January 3, 1953Preceded byJed Johnson, Sr.Succeeded byVictor WickershamIn officeJanuary 3, 1957 – January 3, 1961Preceded byVictor WickershamSucceeded byVictor Wickersham Personal detailsBornFebruary 28, 1899 (1899-02-28)Granbury, TexasDiedSeptember 1, 1973 (1973-10) (aged 74)Lawton, OklahomaCitizenship United St...
Esperance Sportive De TunisNama lengkapEsperance Sportive de TunisJulukanMkachkha, Blood & Gold, TarajiBerdiri15 Januari 1919StadionStade Olympique de RadesTunis, Tunisia(Kapasitas: 60,000)Ketua Hamdi MeddebManajer Maher Kanzari Skander Kasri (asisten pelatih)LigaCLP-12020/21Juara Kostum kandang Kostum ketiga Espérance's active sections Sepak bola Bola Tangan Bola Voli Rugby Renang Gulat Tinju Judo Espérance Sportive de Tunis (Arab: الترجي الرياضي التونسيcode: ar is ...
Pietro Riva Nazionalità Italia Calcio Ruolo Centrocampista Carriera Squadre di club1 1938-1939 Lecco14 (2)1940-1941 Lecco? (?)1942-1944 Lecco? (?)1945-1947 Lecco63 (11) Carriera da allenatore 1963-1964 Biellese 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → indica un trasferimento in prestito. Modifica dati su Wikidata · Manuale Pietro Riva (Lecco, 10 novembre 1918 – ...) è stato un allen...
Strains of Japonica rice This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Japanese rice – news · newspapers · books · scholar · JSTOR (December 2016) (Learn how and when to remove this template message) From left: brown rice, half-milled rice, white rice A Japanese rice field in Nara Japanese rice refers to a...
Village in West Bengal, IndiaGarakupiVillageNorth sideGarakupiLocation in West Bengal, India(for direction see coordinate)Show map of West BengalGarakupiGarakupi (India)Show map of IndiaCoordinates: 22°35′18″N 88°48′20″E / 22.588354°N 88.805426°E / 22.588354; 88.805426Country IndiaStateWest BengalDistrictNorth 24 ParganasBlockHasnabadPopulation (2011) • Total2,029Languages • OfficialBengali, EnglishTime zoneUTC+5:30 (...
Spiral galaxy in the constellation Cetus NGC 230NGC 230 is the galaxy at the middle bottom. NGC 232 and 235 are at the upper left and IC 1573 is on the right.Observation data (J2000 epoch)ConstellationCetusRight ascension00h 42m 27.2s[1]Declination−23° 37′ 44″[1]Redshift0.022546[1]Apparent magnitude (V)15.36[1]CharacteristicsTypeSa[1]Apparent size (V)1.1' × 0.2'[1]Other designationsESO 474- G 014, MCG -04-...
American college basketball season 2023–24 Grand Canyon Antelopes men's basketballWAC regular season and tournament championsNCAA tournament, Second RoundConferenceWestern Athletic ConferenceRecord30–5 (17–3 WAC)Head coachBryce Drew (4th season)Assistant coaches Jamall Walker Ed Schilling Casey Shaw Marc Rodgers Jake Lindsey Home arenaGCU ArenaSeasons← 2022–232024–25 → 2023–24 WAC men's basketball standings vte Conf Overall Team W L PC...
Political organization in Bessarabia that proclaimed the Moldavian Democratic Republic For other uses, see Sfatul Țării (disambiguation). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's tone or style may not reflect the encyclopedic tone used on Wikipedia. See Wikipedia's guide to writing better articles for suggestions. (December 2009) (Learn how and when to remove this ...
Selat Georgia pada bagian tengah, Selat Juan de Fuca bawah, Puget Sound pada bagian kanan bawan, Selat Johnstone pada kiri atas. Sedimen Sungai Fraser terlihat dengan jelas. Selat Georgia (bahasa Inggris: Strait of Georgia or Georgia Strait)[1] (juga dikenal sebagai Selat Georgia) adalah sebuah selat antara Pulau Vancouver (juga dengan Gulf Islands berdekatan) dan pantai daratan British Columbia, Kanada. Selat ini memiliki panjang sekitar 240 kilometer (150 mi) dan lebar yang...
Voce principale: Associazione Sportiva Lucchese Libertas 1905. Associazione Sportiva Lucchese LibertasStagione 1999-2000Sport calcio Squadra Lucchese Allenatore Gian Cesare Discepoli (1ª-6ª) Corrado Orrico (7ª-34ª) Presidente Aldo Grassi Serie C16º posto Coppa ItaliaFase a gironi (3ª) Maggiori presenzeCampionato: Russo (33) Miglior marcatoreCampionato: Colacone (14) 1998-1999 2000-2001 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti l'Assoc...
Location of Lot-et-Garonne in France Following is a list of senators of Lot-et-Garonne, people who have represented the department of Lot-et-Garonne in the Senate of France. Third Republic Senators for Lot-et-Garonne under the French Third Republic were:[1] Octave de Bastard d'Estang (1876–1879) Raymond Noubel (1876–1879) Louis Pons (1879–1888) Léopold Faye (1879–1900) Édouard Laporte (1885–1890) Jean-Baptiste Durand (1888–1897) Armand Fallières (1890–1906) Joseph Ch...
Le climat de l'Isère, principalement en fonction de la saison et du relief (plaines, vallées, montagnes) est très varié. Dans le Nord-Isère, on peut parler d'un climat continental avec de très légères influences venant du sud (léger creux pluviométrique en été et en hiver et fortes précipitations au printemps et en automne). Il neige beaucoup en hiver, notamment dans les terres froides et les étés sont chauds, venteux et quelque peu secs[1]. Au sud et à l'ouest on peut parler ...
Dictionary of Australian English Macquarie Dictionary The Macquarie Dictionary, 6th editionLanguageAustralian English, New Zealand EnglishSubjectDictionaryPublisherMacquarie Dictionary PublishersPublication date1981, 1991, 1997, 2005, 2009, 2013, 2017, 2020, 2023Publication placeAustraliaMedia typePrint, digital The Macquarie Dictionary (/məˈkwɒri/) is a dictionary of Australian English. It is considered by many to be the standard reference on Australian English.[1][2]...
آدي باراشاكتي الروح الأسمى، الإله على شكل أم مركز العبادة الرئيسي الهند رمز ఆది పరా శక్తి تعديل مصدري - تعديل وفقا للأساطير الهندوسية، فإن آدي باراشاكتي أو الإلهة ديفي، هي الكائن الأسمى. وهي أيضا المشار إليها شعبيا باسم «آدي شاكتي» و«بارام شاكتي» و«مها شاكتي» و«...
Temporary diversion of an aircraft engine's thrust Thrust reversers deployed on the CFM56 engine of an Airbus A321 Thrust reversal, also called reverse thrust, is the temporary diversion of an aircraft engine's thrust for it to act against the forward travel of the aircraft, providing deceleration. Thrust reverser systems are featured on many jet aircraft to help slow down just after touch-down, reducing wear on the brakes and enabling shorter landing distances. Such devices affect the aircra...
A Klase 1961–1962 Competizione A Lyga Sport Calcio Edizione 18ª Luogo Unione Sovietica RSS Lituana Partecipanti 24 Risultati Vincitore Atletas Kaunas(1º titolo) Statistiche Miglior marcatore R. Kazlauskas (22) Incontri disputati 285 Gol segnati 1 293 (4,54 per incontro) Cronologia della competizione 1960-1961 1962-1963 Manuale L'edizione 1961–1962 dell'A Klase fu la diciottesima come campionato della Repubblica Socialista Sovietica Lituana; il campionato...