Bottleneck traveling salesman problem

The Bottleneck traveling salesman problem (bottleneck TSP) is a problem in discrete or combinatorial optimization. The problem is to find the Hamiltonian cycle (visiting each node exactly once) in a weighted graph which minimizes the weight of the highest-weight edge of the cycle.[1] It was first formulated by Gilmore & Gomory (1964) with some additional constraints, and in its full generality by Garfinkel & Gilbert (1978).[1][2][3]

Complexity

The problem is known to be NP-hard. The decision problem version of this, "for a given length x is there a Hamiltonian cycle in a graph G with no edge longer than x?", is NP-complete. NP-completeness follows immediately by a reduction from the problem of finding a Hamiltonian cycle.[4]

Algorithms

Another reduction, from the bottleneck TSP to the usual TSP (where the goal is to minimize the sum of edge lengths), allows any algorithm for the usual TSP to also be used to solve the bottleneck TSP. If the edge weights of the bottleneck TSP are replaced by any other numbers that have the same relative order, then the bottleneck solution remains unchanged. If, in addition, each number in the sequence exceeds the sum of all smaller numbers, then the bottleneck solution will also equal the usual TSP solution. For instance, such a result may be attained by resetting each weight to ni where n is the number of vertices in the graph and i is the rank of the original weight of the edge in the sorted sequence of weights. For instance, following this transformation, the Held–Karp algorithm could be used to solve the bottleneck TSP in time O(n22n).[1]

Alternatively, the problem can be solved by performing a binary search or sequential search for the smallest x such that the subgraph of edges of weight at most x has a Hamiltonian cycle. This method leads to solutions whose running time is only a logarithmic factor larger than the time to find a Hamiltonian cycle.[1]

Variations

In an asymmetric bottleneck TSP, there are cases where the weight from node A to B is different from the weight from B to A (e. g. travel time between two cities with a traffic jam in one direction).

The Euclidean bottleneck TSP, or planar bottleneck TSP, is the bottleneck TSP with the distance being the ordinary Euclidean distance. The problem still remains NP-hard. However, many heuristics work better for it than for other distance functions.

The maximum scatter traveling salesman problem is another variation of the traveling salesman problem in which the goal is to find a Hamiltonian cycle that maximizes the minimum edge length rather than minimizing the maximum length. Its applications include the analysis of medical images, and the scheduling of metalworking steps in aircraft manufacture to avoid heat buildup from steps that are nearby in both time and space. It can be translated into an instance of the bottleneck TSP problem by negating all edge lengths (or, to keep the results positive, subtracting them all from a large enough constant). However, although this transformation preserves the optimal solution, it does not preserve the quality of approximations to that solution.[1]

Metric approximation algorithm

If the graph is a metric space then there is an efficient approximation algorithm that finds a Hamiltonian cycle with maximum edge weight being no more than twice the optimum. This result follows by Fleischner's theorem, that the square of a 2-vertex-connected graph always contains a Hamiltonian cycle. It is easy to find a threshold value θ, the smallest value such that the edges of weight θ form a 2-connected graph. Then θ provides a valid lower bound on the bottleneck TSP weight, for the bottleneck TSP is itself a 2-connected graph and necessarily contains an edge of weight at least θ. However, the square of the subgraph of edges of weight at most θ is Hamiltonian. By the triangle inequality for metric spaces, its Hamiltonian cycle has edges of weight at most 2θ.[5][6]

This approximation ratio is best possible. For, any unweighted graph can be transformed into a metric space by setting its edge weights to 1 and setting the distance between all nonadjacent pairs of vertices to 2. An approximation with ratio better than 2 in this metric space could be used to determine whether the original graph contains a Hamiltonian cycle, an NP-complete problem.[6]

Without the assumption that the input is a metric space, no finite approximation ratio is possible.[1]

See also

References

  1. ^ a b c d e f Kabadi, Santosh N.; Punnen, Abraham P. (2007), "The bottleneck TSP", in Gutin, Gregory; Punnen, Abraham P. (eds.), The Traveling Salesman Problem and Its Variations, Combinatorial Optimization, vol. 12, Springer, pp. 697–735, doi:10.1007/0-306-48213-4_15, ISBN 978-0-387-44459-8.
  2. ^ Gilmore, P. C.; Gomory, R. E. (1964), "Sequencing a one state-variable machine: A solvable case of the traveling salesman problem", Oper. Res., 12 (5): 655–679, doi:10.1287/opre.12.5.655, JSTOR 167772.
  3. ^ Garfinkel, R. S.; Gilbert, K. C. (1978), "The bottleneck traveling salesman problem: Algorithms and probabilistic analysis", Journal of the ACM, 25 (3): 435–448, doi:10.1145/322077.322086, S2CID 12062434.
  4. ^ Garey, Michael R.; Johnson, David S. (1979), Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman, A2.3: ND24, p. 212, ISBN 0-7167-1045-5.
  5. ^ Parker, R. Garey; Rardin, Ronald L. (1984), "Guaranteed performance heuristics for the bottleneck traveling salesman problem", Operations Research Letters, 2 (6): 269–272, doi:10.1016/0167-6377(84)90077-4.
  6. ^ a b Hochbaum, Dorit S.; Shmoys, David B. (May 1986), "A unified approach to approximation algorithms for bottleneck problems", Journal of the ACM, 33 (3), New York, NY, USA: ACM: 533–550, doi:10.1145/5925.5933, S2CID 17975253.

Read other articles:

Town in Shan State, MyanmarTachileik တာချီလိတ်မြို့TownSkyline of Tachileik on the Daen Lao Range, seen from Thailand's Wat Phra That Doi Wao [th]TachileikLocation in BurmaCoordinates: 20°27′N 99°53′E / 20.450°N 99.883°E / 20.450; 99.883Country MyanmarDivision Shan StateAdmin. districtTachileikAdmin. townshipTachileik TownshipPopulation (2014)51,553 • EthnicitiesShan • Rel...

 

18 MusikJenisMusik dan HiburanIndustriMusik dan HiburanDidirikan2011 di JakartaKantorpusatJakarta, IndonesiaProdukMusik dan HiburanSitus webhttp://www.18musik.com 18 Musik adalah perusahaan rekaman asal Indonesia. Perusahaan ini didirikan pada tahun 2000 di Jakarta. Penyanyi terkenal di label rekaman ini seperti Super Girlies, Devi Noviaty, dan masih banyak lagi. Penyanyi/Grup Devi Noviaty Essa Brillian Ever Slkr Super Girlies Dara Fu Gotrie Miss Ronggeng Primadonna Kunci Pop Corn Tiket Manda...

 

Royaume de SaxeKönigreich Sachsen 1806–1918Drapeau (à partir de 1815) Hymne Sachsenlied (de) (1890-1918) Le royaume de Saxe au sein de l'Empire allemand.Informations générales Statut Monarchie constitutionnelle successivement membre de : la confédération du Rhin (1806-1813) la confédération germanique (1815~1866) la confédération de l'Allemagne du Nord (1867-1871) l'Empire allemand (1871-1918) Capitale Dresde Langue(s) Allemand Monnaie Saxon thaler (en) Démographie Pop...

Приморье на карте Словении Словенское Приморье (словен. Primorska; итал. Litorale; нем. Küstenland) — западная часть Словении, прилегающая к Адриатическому морю, частично расположенная на территории двух исторических областей — Горица и Истрия. До образования Югославии эт�...

 

Hot Issue핫이슈Hot Issue Juli 2021. Dari kiri ke kanan: Nahyun, Hyeongshin, Yewon, Mayna, Dain, Yebin dan DanaInformasi latar belakangAsalSeoul, Korea SelatanGenre K-pop Dansa Tahun aktif2021 (2021)–2022 (2022)LabelS2 EntertainmentSitus webhotissue.comAnggota Mayna Nahyun Hyeongshin Dana Yewon Yebin Dain Hot Issue (Hangul: 핫이슈; ditulis dalam huruf kapital) adalah sebuah grup vokal wanita asal Korea Selatan yang dibentuk oleh S2 Entertainment pada 2021. Grup ini m...

 

Subsequent to the Native American mascot controversy Part of a series onDiscrimination Forms Institutional Structural Attributes Age Caste Class Dialect Disability Genetic Hair texture Height Language Looks Mental disorder Race / Ethnicity Skin color Scientific racism Rank Sex Sexual orientation Species Size Viewpoint Social Arophobia Acephobia Adultism Anti-albinism Anti-autism Anti-homelessness Anti-drug addicts Anti-intellectualism Anti-intersex Anti-left handedness Anti-Masonry A...

Veysonnaz Veysonnaz vu depuis Basse-Nendaz en 2023. Armoiries Logo Administration Pays Suisse Canton Valais District Sion Communes limitrophes Sion et Nendaz Président Patrick Lathion (PDC) NPA 1993 No OFS 6267 Démographie Gentilé Veysonnard Populationpermanente 594 hab. (31 décembre 2022) Densité 540 hab./km2 Langue Français Géographie Coordonnées 46° 11′ 46″ nord, 7° 20′ 15″ est Altitude 1 233 m Superficie 1,1 km...

 

Patung Raja Tomislav di Zagreb, Tomislav adalah raja Kroasia pertama. Nasionalisme Kroasia adalah nasionalisme yang mendorong kebangsaan orang Kroasia dan mempromosikan persatuan kebudayaan orang Kroasia.[1] Dalam beberapa kasus, nasionalisme ini juga meliputi klaim iredentis Kroasia Raya. Nasionalisme Kroasia modern mula-mula timbul pada abad ke-19 dalam menanggapi Magyarisasi teritorial Kroasia di bawah kekuasaan Hungaria.[2] Referensi ^ Motyl 2001, hlm. 103-104. ^ Moty...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Valasaravakkam – news · newspapers · books · scholar · JSTOR (August 2018) (Learn how and when to remove this message) Neighbourhood in Chennai district, Tamil Nadu, IndiaValasaravakkamNeighbourhoodValasaravakkamValasaravakkam(Chennai)Show map of ChennaiValasar...

For the Albanian village, see Bujan. For other uses, see Buyan (disambiguation). Buyan Island, by Ivan Bilibin In the Dove Book and other medieval Russian books, Buyan (Russian: Буя́н, sometimes transliterated as Bujan[1]) is described as a mysterious island in the ocean with the ability to appear and disappear with the tide. Three brothers—Northern, Western, and Eastern Winds—live there, and also the Zoryas, solar goddesses who are servants or daughters of the solar god Dazh...

 

Railway station in Melbourne, Australia Hoppers CrossingPTV commuter rail stationPlatform 1 waiting shelter, June 2016General informationLocationOld Geelong Road,Hoppers Crossing, Victoria 3029City of WyndhamAustraliaCoordinates37°53′00″S 144°42′04″E / 37.8833°S 144.7011°E / -37.8833; 144.7011Owned byVicTrackOperated byMetro TrainsLine(s)WerribeeDistance27.67 kilometres fromSouthern CrossPlatforms2 (1 island)Tracks2Connections BusConstructionStructure typeG...

 

356-мм железнодорожная артиллерийская установка ТМ-1-14 Артиллерийская установка ТМ-1-14 при ведении огня с железнодорожного пути История производства Разработано Центральное конструкторское бюро судостроения номер 3 (ЦКБС-3) под руководством А.Г. Дукельского Страна произв�...

معركة أورتونا جزء من حملة نهر مورو    التاريخ وسيط property غير متوفر. بداية 20 ديسمبر 1943[1]  نهاية 28 ديسمبر 1943[1]  البلد إيطاليا  الموقع أورتونا  42°21′11″N 14°24′13″E / 42.353055555556°N 14.403611111111°E / 42.353055555556; 14.403611111111   تعديل مصدري - تعديل   معركة أورت...

 

American college basketball season 1981–82 Minnesota Golden Gophers men's basketballBig Ten ChampionsNCAA Men's Division I Tournament, Sweet SixteenConferenceBig Ten ConferenceRankingCoachesNo. 6APNo. 7Record23–6 (14–4 Big Ten)Head coachJim DutcherAssistant coachJimmy WilliamsHome arenaWilliams ArenaSeasons← 1980–811982–83 → 1981–82 Big Ten Conference men's basketball standings vte Conf Overall Team W   L   PCT W   L   ...

 

Roman Catholic diocese in Mexico Diocese of CuernavacaDioecesis CuernavacensisDiócesis de CuernavacaCatedral de la Asunción de MaríaLocationCountry MexicoEcclesiastical provinceProvince of TolucaMetropolitanCuernavacaStatisticsArea1,908 sq mi (4,940 km2)Population- Total- Catholics(as of 2006)2,144,0001,854,000 (86.5%)Parishes109InformationDenominationRoman CatholicRiteRoman RiteEstablished23 June 1891 (133 years ago)CathedralCathedral of the Assumption o...

La Dzoungarie et le bassin du Tarim (comprenant le désert du Taklamakan) séparés par la chaîne des Montagnes célestes. La Dzoungarie actuelle en rouge sur la carte du Xinjiang. La Dzoungarie ou Djoungarie ou anciennement Soungarie[1],[2]. (mongol : ᠵᠡᠭᠦᠨᠭᠠᠷ ᠤᠨᠨᠤᠲᠤᠭ, VPMC : jeɣungarun nutug, cyrillique : Зүүнгарын нутаг, MNS : Zuungaryn Nutag, züün gar signifie main gauche) rassemble ce que les Chinois appellent le Beij...

 

Emperor of Japan from 1663 to 1687 Emperor Reigen霊元天皇Emperor of JapanReign5 March 1663 – 2 May 1687Enthronement2 June 1663PredecessorGo-SaiSuccessorHigashiyamaShōguns See list Tokugawa IetsunaTokugawa Tsunayoshi BornSatohito (識仁)(1654-07-09)9 July 1654Tokugawa shogunate(now Japan)Died24 September 1732(1732-09-24) (aged 78)Honshu, Tokugawa shogunateBurialTsuki no wa no misasagi, KyotoSpouse Takatsukasa Fusako ​ ​(m. 1670; died 1712)...

 

Australian rugby league footballer Ronald VolkmanPersonal informationFull nameRonald VolkmanBorn (2002-07-04) 4 July 2002 (age 22)Sydney, AustraliaHeight179 cm (5 ft 10 in)Weight93 kg (14 st 9 lb)Playing informationPositionFive-eighth, Halfback Club Years Team Pld T G FG P 2022–23 New Zealand Warriors 5 1 0 0 4 Representative Years Team Pld T G FG P 2023 Samoa 1 0 0 0 0 Source: [1]As of 2 September 2023 Ronald Volkman (born 4 July 2002) is...

Branch of service of the German Wehrmacht during the Second World War Panzerjäger Marder I Panzerjäger Marder III Nashorn mounted an 88 mm anti-tank gun on a chassis derived from the German medium tanks Panzerjäger (German: literally armor hunter, more broadly anti-tank) is a term used for an anti-tank vehicle (self-propelled anti-tank gun), as well as anti-tank units. The term was first used in the Wehrmacht (German armed forces, 1935–45), and also post-war by the German Federal Republi...

 

Marshallese politician Dwight HeineDistrict Administrator of the Marshall IslandsIn office1965–1969Preceded byPeter Tali ColemanSucceeded byRobert D. LawSpeaker of the TTPI House of RepresentativesIn office1965Succeeded byBethwel HenryMember of the TTPI House of RepresentativesIn office1965Succeeded byEkpap SilkConstituencyMarshalls 6th District Personal detailsBorn12 October 1919[1]Ebon Atoll, South Seas MandateDied13 November 1984(1984-11-13) (aged 65)[2]Majuro, Marsh...