Anthranilic acid is an aromatic acid with the formula C6H4(NH2)(CO2H) and has a sweetish taste.[5][6][7] The molecule consists of a benzene ring, ortho-substituted with a carboxylic acid and an amine. As a result of containing both acidic and basic functional groups, the compound is amphoteric. Anthranilic acid is a white solid when pure, although commercial samples may appear yellow. The anion [C6H4(NH2)(CO2)]−, obtained by the deprotonation of anthranilic acid, is called anthranilate. Anthranilic acid was once thought to be a vitamin and was referred to as vitamin L1 in that context, but it is now known to be non-essential in human nutrition.[8]
Structure
Although not usually referred to as such, it is an amino acid. Solid anthranilic acid typically consists of both the amino-carboxylic acid and the zwitterionic ammonium carboxylate forms, and has a monoclinic crystal structure with space group P21.[9] It is triboluminescent.[10] Above 81 °C (178 °F; 354 K), it converts to an orthorhombic form with space group Pbca, which is not triboluminescent; a non-triboluminescent monoclinic phase with similar structure is also known.[10]
History and etymology
In 1840-1841, Carl Julius Fritzsche was able to extract and crystallize two acids from the products of reaction of indigo dye with caustic potash, which he called chrysanilic and anthranilic acids after their colors before purification (golden yellow and black respectively) and the plant anil (Indigofera suffruticosa).[11][12] The former was identified as ortho-carboxy anil of indoxyl-2-aldehyde only in 1910[13] while the latter was identified as salicylamide already in 1843 by Cahours.[14]
Production
Many routes to anthranilic acid have been described. Industrially it is produced from phthalic anhydride, beginning with amination:
C6H4(C(O)NH2)CO2Na + HOCl → C6H4NH2CO2H + NaCl + CO2
A related method involves treating phthalimide with sodium hypobromite in aqueous sodium hydroxide, followed by neutralization.[16] In the era when indigo dye was obtained from plants, it was degraded to give anthranilic acid.
Anthranilic acid was first obtained by base-induced degradation of indigo.[17]
^Hardy, Mark R. (1997). "Glycan Labeling with the Flurophores 2-Aminobenzamide and Antranilic Acid". In Townsend, R. Reid; Hotchkiss, Arland T. Jr. (eds.). Techniques in Glycobiology. Marcel Dekker, Inc. p. 360. ISBN9780824798222 – via Google Books.
^ abHardy, Gordon E.; Kaska, William C.; Chandra, B. P.; Zink, Jeffrey I. (March 1981). "Triboluminescence-structure relationships in polymorphs of hexaphenylcarbodiphosphorane and anthranilic acid, molecular crystals, and salts". Journal of the American Chemical Society. 103 (5): 1074–1079. doi:10.1021/ja00395a014.
^Vogel's Textbook of Practical Organic Chemistry, 4th Ed., (B. S. Furniss et al., Eds.) (1978), p.666, London: Longman.
^Sheibley, Fred E. (1943). "Carl Julius Fritzsche and the discovery of anthranilic acid, 1841". Journal of Chemical Education. 20 (3): 115. Bibcode:1943JChEd..20..115S. doi:10.1021/ed020p115.
^Angelos SA, Meyers JA (1985). "The isolation and identification of precursors and reaction products in the clandestine manufacture of methaqualone and mecloqualone". Journal of Forensic Sciences. 30 (4): 1022–1047. doi:10.1520/JFS11044J. PMID3840834.