It makes an excellent solid rocket oxidizer with a slightly higher specific impulse than ammonium perchlorate and, more importantly, does not leave corrosive hydrogen chloride fumes. This property is also of military interest because halogen-free smoke is harder to detect. It decomposes into low-molecular-mass gases, which contributes to higher performance without creating excessive temperatures if used in gun or rocket propellants. However, the dinitramide salt is more prone to detonation under high temperatures and shock compared with the perchlorate.
The Eurenco Bofors company produced LMP-103S as a 1-to-1 substitute for hydrazine by dissolving 65% ammonium dinitramide, [NH4]N(NO2)2, in 35% water solution of methanol and ammonia. LMP-103S has 6% higher specific impulse and 30% higher impulse density than hydrazine monopropellant. Additionally, hydrazine is highly toxic and carcinogenic, while LMP-103S is only moderately toxic. LMP-103S is UN Class 1.4S, allowing for transport on commercial aircraft, and was demonstrated on the Prisma satellite in 2010. Special handling is not required. LMP-103S could replace hydrazine as the most commonly used monopropellant.[3][4]
The ADN-based monopropellant FLP-106 is reported to have improved properties relative to LMP-103S, including higher performance (ISP of 259 s vs. 252 s) and density (1.362 g/cm3 vs. 1.240 g/cm3).[5]
There is also interest in using ADN to make liquid monopropellants. When ADN is co-crystalized with a crown ether (18C6), the hygroscopicity is greatly reduced, but so is its performance as an explosive.[9] ADN was mixed with amine nitrates in order to lower its melting point for use as a liquid monopropellant. The onset temperature for ADN was essentially unchanged, but some cross-reaction with the amine nitrates was observed.[10] Kim et al. have also examined mixtures of ADN with hydrogen peroxide as a potential liquid monopropellant.[11]
Preparation
There are at least 20 different synthesis routes that produce ammonium dinitramide. In the laboratory ammonium dinitramide can be prepared by nitration of sulfamic acid or its salts (here potassium sulfamate) at low temperatures:
Another synthesis known as the urethane synthesis method requires four synthesis steps and results in a yield of up to 60%.[12]Ethyl carbamate is nitrated with nitric acid:
^US 5714714, Stern, Alfred G.; Koppes, William M. & Sitzmann, Michael E. et al., "Process for preparing ammonium dinitramide", published 1998-02-03, assigned to USA, Secretary of the Navy