Adam Adamandy Kochański

Adam Adamandy Kochański IPA: [ˈadam adaˈmandɨ kɔˈxaj̃ski] (5 August 1631 – 17 May 1700) was a Polish mathematician, physicist, clock-maker, pedagogue and librarian.[1] He was the Court Mathematician of John III Sobieski.[1]

Kochański was born in Dobrzyń nad Wisłą. He began his education in Toruń, and in 1652 he entered the Society of Jesus in Vilnius. He studied philosophy at Vilnius University (then called Vilnius Academy). He also studied mathematics, physics and theology. He went on to lecture on those subjects at several European universities: in Florence, Prague, Olomouc, Wrocław, Mainz and Würzburg. In 1680 he accepted an offer from John III Sobieski, the king of Poland, returning to Poland and taking the position of the king's chaplain, mathematician, clock maker, librarian, and tutor of the king's son, Jakub.

He wrote many scientific papers, mainly on mathematics and mechanics, but also on physics, astronomy and philosophy. The best known of his works, Observationes Cyclometricae ad facilitandam Praxin accommodatae, is devoted to the squaring the circle (or alternatively, the quadrature of the circle) and was published in 1685 in the leading scientific periodical of the time, Acta Eruditorum. He also found a famous approximation of π today called Kochański's approximation:[2]

Kochański cooperated and corresponded with many scientists, Johannes Hevelius and Gottfried Leibniz among them. He was apparently the only one of the contemporary Poles to know elements of the newly invented calculus. As a mechanic he was a renowned clock maker. He suggested replacing the clock's pendulum with a spring, and standardizing the number of escapements per hour.

He died in Teplice in Bohemia.

References

  • Kochański, Adam Adamandy (1685), "Observationes Cyclometricae ad facilitandam Praxin accomodatae", Acta Eruditorum, 4: 394–398

Read other articles:

Gran Turismo 5 Sampul Gran Turismo 5 EropaPublikasiJP: 25 November 2010[2]NA: 24 November 2010[1]EU: 24 November 2010[3]AU: 25 November 2010[4]Versi 2.17 GenreBalapan simKarakteristik teknisPlatformPlayStation 3 ModePermainan video pemain tunggal dan permainan video multipemain FormatCakram Blu-ray Metode inputkontroler permainan video Format kode Daftar 30 Informasi pengembangPengembangPolyphony DigitalPenyuntingSony Interactive Entertainment DesainerKazunori ...

 

 

نهر سارت     المنطقة البلد فرنسا  الخصائص الطول 313.9 كيلومتر[1]،  و313 كيلومتر  المصب مين[1]  مساحة الحوض 22185 كيلومتر مربع[1]  تعديل مصدري - تعديل   47°29′35″N 0°32′34″W / 47.49306°N 0.54278°W / 47.49306; -0.54278 (Maine-Sarthe) نهر سارت. نهر السارت في لو مان. نه�...

 

 

Alleged humanoid extraterrestrials Artist interpretation of a Nordic Alien. This type of alien is said to be extremely human-like in appearance. Human to the right is shown to give an idea of the different size to be said to exist between the human race and such human-like alien. In ufology, Nordic alien is the name given to alleged humanoid extraterrestrials, purported to come from the Pleiades, who resemble Nordic-Scandinavians.[1] Alleged contactees describe them as being 6–7...

Artikel ini bukan mengenai Alexander Gelfond. Nama ini menggunakan aturan penamaan Slavia Timur; nama patronimiknya adalah Moiseevich dan nama keluarganya adalah Gelfand. Israïl Moiseevich GelfandLahir(1913-09-02)2 September 1913Okny, Kegubernuran Kherson, Kekaisaran RusiaMeninggal5 Oktober 2009(2009-10-05) (umur 96)New Brunswick, New Jersey, Amerika SerikatKebangsaanUni SovietRusiaAlmamaterUniversitas Negeri MoskwaKarier ilmiahBidangMatematikaInstitusiUniversitas Negeri MoskwaUnive...

 

 

Process of transferring private assets to municipal ownership Primary barriers to municipalization Municipalization is the transfer of private entities, assets, service providers, or corporations to public ownership by a municipality, including (but not limited to) a city, county, or public utility district ownership.[1] The transfer may be from private ownership (usually by purchase) or from other levels of government. It is the opposite of privatization and is different from nationa...

 

 

Localizzazione del Liechtenstein nel mondo I diritti delle persone LGBT (lesbiche, gay, bisessuali e transgender) in Liechtenstein non sono gli stessi delle persone eterosessuali.[1] L'attività sessuale tra persone dello stesso sesso è legale dal 1989, mentre dal 2001 è stata fissata la stessa età del consenso delle coppie eterosessuali. Le coppie dello stesso sesso hanno accesso alle partnership registrate dal 2011, e dal 2016 sono vietate le discriminazioni verso gli omosessuali...

The Spider and the RoseSutradaraJohn McDermottDitulis olehGerald C. DuffyPemeranAlice Lake Richard Headrick Gaston GlassSinematograferGlen MacWilliams Charles RichardsonPerusahaanproduksiB.F. Zeidman ProductionsDistributorPrincipal DistributingTanggal rilis15 Februari 1923Durasi70 menitNegaraAmerika SerikatBahasaBisu Intertitel Inggris The Spider and the Rose adalah sebuah film drama sejarah bisu Amerika Serikat tahun 1923 garapan John McDermott dan menampilkan Alice Lake, Richard Headrick da...

 

 

Cet article possède un paronyme, voir Tanit. Pour le traité talmudique de ce nom, voir Taanit (traité). Un ta'anit (hébreu : תענית « mortification ») désigne une période de privation de nourriture et de boissons à titre volontaire, privé ou public, dans un but de repentir, de deuil ou d'abstinence. Le taʿanit est prescrit dans la Bible lors du jour solennel du Grand Pardon, aux côtés de nombreuses manifestations individuelles d’affliction. Divers jeûnes pu...

 

 

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

Czechoslovak communist politician This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (March 2014) (Learn how and when to remove this message) Artur London during the trial Artur London (1 February 1915 – 8 November 1986) was a Czechoslovak communist politician and co-defendant in the Slánský Trial in 1952. Though he was sentenced to life in prison, he was...

 

 

Patung Raja Tomislav di Zagreb, Tomislav adalah raja Kroasia pertama. Nasionalisme Kroasia adalah nasionalisme yang mendorong kebangsaan orang Kroasia dan mempromosikan persatuan kebudayaan orang Kroasia.[1] Dalam beberapa kasus, nasionalisme ini juga meliputi klaim iredentis Kroasia Raya. Nasionalisme Kroasia modern mula-mula timbul pada abad ke-19 dalam menanggapi Magyarisasi teritorial Kroasia di bawah kekuasaan Hungaria.[2] Referensi ^ Motyl 2001, hlm. 103-104. ^ Moty...

 

 

American mobster (1916–1977) Charles NicolettiBorn(1916-12-03)December 3, 1916Chicago, Illinois, U.S.DiedMarch 29, 1977(1977-03-29) (aged 60)Northlake, Illinois, U.S.Cause of deathMultiple gunshot woundsResting placeMount Carmel Cemetery (Hillside, Illinois)NationalityAmericanOther namesChuckie NicolettiChuckie the TypewriterOccupationMobsterAllegianceChicago Outfit Charles Nicoletti (/ˌnɪkəˈlɛti/; December 3, 1916 – March 29, 1977), also known as Chuckie the Typewrite...

أسامة بن منقذ معلومات شخصية الميلاد 27 جمادى الآخرة 488هـ / 3 تموز (يوليو) 1095مشيزر، شمالي حماة، إمارة بني منقذ الوفاة 23 رمضان 584هـ / 14 تشرين الثاني (نوفمبر) 1188مدمشق،  الدولة الأيوبية مكان الدفن جبل قاسيون، دمشق،  الدولة الأيوبية اللقب مؤيد الدولة • مجد الدين الحياة العملية...

 

 

Formal set of principal goals supported by a political party or candidate For other uses, see Manifesto. Part of the Politics seriesParty politics Political spectrum Left-wing Far-leftCentre-left Centre Centre-leftRadical centreCentre-right Right-wing Centre-rightFar-right Platforms/Ideologies Anarchist Christian Democratic Communist Conservative Democratic Environmentalist Fascist Fundamentalist Globalist Green Internationalist Liberal Libertarian Nationalist Pirate Party Populist Progressiv...

 

 

British Conservative politician The subject of this article is standing for re-election to the House of Commons of the United Kingdom on 4 July, and has not been an incumbent MP since Parliament was dissolved on 30 May. Some parts of this article may be out of date during this period. Please feel free to improve this article (but note that updates without valid and reliable references will be removed) or discuss changes on the talk page. Mark EastwoodMPMember of Parliament for Dewsb...

Federal electoral district of Germany 91 Euskirchen – Rhein-Erft-Kreis IIElectoral districtfor the BundestagEuskirchen – Rhein-Erft-Kreis II in 2025StateNorth Rhine-WestphaliaPopulation324,100 (2019)Electorate249,198 (2021)Major settlementsEuskirchenErftstadtBrühl (Rhineland)Area1,428.1 km2Current electoral districtCreated1949PartyCDUMemberDetlef SeifElected2009, 2013, 2017, 2021 Euskirchen – Rhein-Erft-Kreis II is an electoral constituency (German: Wahlkreis) represented in the Bundes...

 

 

Fourier transform of the probability density function The characteristic function of a uniform U(–1,1) random variable. This function is real-valued because it corresponds to a random variable that is symmetric around the origin; however characteristic functions may generally be complex-valued. In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density...

 

 

Bentuk asli dari nama pribadi ini adalah Madaras József. Artikel ini menggunakan rangkaian nama Barat. József MadarasLahir(1937-08-16)16 Agustus 1937Rigmani, RumaniaMeninggal24 April 2007(2007-04-24) (umur 69)Máriahalom, HungariaPekerjaanPemeranTahun aktif1958–2006 József Madaras (16 Agustus 1937 – 24 April 2007) adalah seorang pemeran film Hungaria. Ia tampil dalam 85 film antara 1958 dan 2006. Filmografi pilihan Tales of a Long Journey (1963) The Round-Up (19...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) 73° خط طول 73 شرق خريطة لجميع الإحداثيات من جوجل خريطة لجميع الإحداثيات من بينغ تصدير جميع الإحداثيات من كي...

 

 

26°34′N 31°42′E / 26.56°N 31.7°E / 26.56; 31.7   ميّز عن مدينة سوهاج. محافظة سوهاج محافظة مصرية علمعلم شعارشعار الموقع في جمهورية مصر العربيةالموقع في جمهورية مصر العربية تقسيم إداري العاصمة سوهاج أكبر مدينة سوهاج عدد المدن 12 مدن عدد المراكز 11 مركز عدد الأحياء 3 أحياء عدد...