ALOX12 (EC1.13.11.31), also known as arachidonate 12-lipoxygenase, 12-lipoxygenase, 12S-Lipoxygenase, 12-LOX, and 12S-LOX is a lipoxygenase-type enzyme that in humans is encoded by the ALOX12gene which is located along with other lipoyxgenases on chromosome 17p13.3.[5][6] ALOX12 is 75 kilodalton protein composed of 663 amino acids.
Other systematic names for ALOX12 include 12S-Lipoxygenase, platelet-type 12-lipoxygenase, arachidonate:oxygen 12-oxidoreductase, Delta12-lipoxygenase, 12Delta-lipoxygenase, and C-12 lipoxygenase. ALOX12, often termed plate platelet-type 12-lipoxygenase, is distinguished from leukocyte-type 12-lipoxygenase which is found in mice, rats, cows, and pigs but not humans. Leukocyte-type 12-lipoxygenase in these animal species shares 73-86% amino acid identity with human ALOX15 but only 57-66% identity with human platelet-type 12-lipoxygenase and, like ALOX15, metabolizes arachidonic acid primarily to 15(S)-hydroperoxy-5Z,8Z,11Z,13E-eicosatetraenoic acid (i.e. 15(S)-HpETE; see 15-Hydroxyeicosatetraenoic acid).[7] Accordingly, rodent leukocyte 12-lipoxygenase is deemed an ortholog of ALOX15 and is designated as Alox15.[8]
Human ALOX12 and ALOX15 along with rodent leukocyte-type Alox12 and Alox15 are commonly termed 12/15-lipoxygenases based on their ability to metabolize arachidonic acid to both 12(S)-HpETE and 15(S)-HpETE and to conduct this same metabolism on arachidonic acid that is esterified to membrane phospholipids; human ALOX15B makes 15(S)-HpETE but not 12(S)-HpETE and therefore is not regarded as a 12/15-lipoxygenase.[9] Studies on the role of ALOX12 in pathophysiology using the main models for such functional studies, rats and mice, are complicated because neither species possesses a lipoxygenase that makes a predominance of 12(S)-HETE and therefore is metabolically equivalent to ALOX12.[7][9] For example, the functions inferred for Alox12 in mice made deficient in Alox12 using knockout methods may not indicate a similar function for ALOX12 in humans due to differences in these two enzymes' metabolic activities. The function of ALOX12 is further clouded by human ALOX15 which metabolizes arachidonic acid primarily to 15(S)-HpETE but also makes lesser but still significant amounts of 12(S)-HpETE (see ALOX15).
ALOX12 is also distinguished from arachidonate 12-lipoxygenase, 12R type (ALOX12B), which metabolizes arachidonic acid to the Rstereoisomer of 12(S)-HpETE viz., 12(R)-hydroperoxy-5Z,8Z,10E,14Z-icosatetraenoic acid (12(R)-HpETE), a product with very different pathophysiological roles than that of 12(S)-HpETE (see ALOX12B).
Discovery
ALOX12, originally called arachidonate 12-lipoxygenase, was first characterized by the Nobel Laureate, Bengt I. Samuelsson, and his famed colleague, Mats Hamberg, in 1974 by showing that human platelets metabolize arachidonic acid not only by the well-known cyclooxygenase pathway into prostaglandins and 12-hydroxyheptadecatrienoic acid but also by a cyclooxygenase-independent pathway to 12(S)-hydroperoxy-5,8,10,14-eicosatetraenoic acid; this activity was the first mammalian lipoxygenase activity to be characterized.[10] In 1975, the first biological activity was attached to this metabolite in studies showing that it simulated the chemotaxis of human neutrophils.[11] During the several years thereafter, human ALOX12 was purified, characterized biochemically, and had its gene molecularly cloned.[7][12]
Tissue distribution
Based predominantly on the presence of its mRNA, human ALOX12 is distributed predominantly in blood platelets and leukocytes and at lower levels in the basal layer of the epidermis (particularly in the skin lesions of psoriasis), islets of Langerhans within the pancreas, and certain cancers.[13]
Enzyme activities
The control of ALOX12 activity appears to rest principally on the availability of its polyunsaturated fatty acid (PUFA) substrates which are released from storage in membrane phospholipids by cell stimulation.[14] The enzyme participates in arachidonic acid metabolism by conducting the following chemical reaction wherein its substrates are arachidonic acid (also termed as arachidonate or, chemically, as 5Z,8Z,11Z,14Z-eicosatetraenoic acid) and O2 (i.e. oxygen) and its product is 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (i.e. 12S-hydroperoxyeicosatetraenoic acid or 12S-HpETE):[10][15]
In cells, 12SHpETE may be further metabolized by ALOX12 itself, by ALOXE3 or possibly other, as yet not fully identified, hepoxilin syntheses to hepoxilin A3 (8R/S-hydroxy-11,12-oxido-5Z,9E,14Z-eicosatrienoic acid) and B3 (10R/S-hydroxy-11,12-oxido-5Z,8Z,14Z-eicosatrienoic acid):[16][17][18]
Hepoxilins can promote certain inflammation responses, increase pain perception (i.e. tactile allodynia), regulate regional blood flow, and contribute to the regulation of blood pressure in animal models (see Hepoxilins). Far more commonly, however, 12S-HpETE is rapidly reduced to its hydroxyl product by ubiquitous cellular peroxidase activities thereby forming 12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid, i.e. 12-hydroxyeicosatetraenoic acid or 12S-HETE:[19]
12S-HETE promotes inflammation responses, may be involved in the perception of puritis (i.e. itching) in the skin, and regulates regional blood flow in animal models; it also promotes the malignant behavior of cultured human cancer cells as well as the growth of certain cancers in animal models (see 12-HETE). While arachidonate and 12(S)-HETE are the predominant substrates and products, respectively, of ALOX12, the enzyme also metabolizes other PUFA.
It metabolizes the omega-3 fatty acid, docosahexaenoic acid (DHA i.e., 4(Z),7(Z),10(Z),13(Z),16(Z),19(Z)-docosahexaenoic acid to 14(R)-hydroperoxy-4(Z),8(Z),10(Z),12(E),16(Z),19(Z)-docosahexaenoic acid)(i.e. 17-hydroperoxy-DHA)
Then, ALOX12 or an unidentified epoxidase-type enzyme may metabolize this intermediate to an epoxide, 13,14-epoxy-4(Z),7(Z),9(E),11(E),16(Z),19(Z)-docosahexaenoic acid (i.e. 13,14-e-maresin)
This is further metabolized to 7R,14S-dihydroxy-4Z,8E,10E,12Z,16Z,19Z-docosahexaenoic acid (i.e. Maresin 1), by an unidentified epoxide hydrolase-type enzyme:
DHA → 17-hydroperoxy-DHA → 13,14-e-maresin → Maresin-1
Maresin 1 has a set of activities that may oppose those of 12(S)-HETE and the hepoxilins; it is a member of a class of PUFA metabolites termed Specialized pro-resolution mediators (SPMs) which possess anti-inflammatory, pain-alleviating, and other defensive activities.[20] ALOX12 also acts on leukotriene A4 (LTA4) in a two cellular reaction termed transcellular metabolism: human neutrophils metabolize arachidonic acid to its 5,6-epoxide, LTA4, and releases this intermediate to nearby neutrophils which metabolize it to lipoxin A4 (5S,6R,15S-trihydroxy-7E,9E,11Z,13Z-eicosatetraenoic acid) and lipoxin B4 (5S,14R,15S-trihydroxy-6E,8Z,10E,12E-eicosatetraenoic acid); both lipoxins are SPMs with many SPM-like activities (see lipoxin).[21] ALOX12 may also metabolize lesser amounts of DHA to secondary products including 17-hydroperoxy-DHA, 11-hydroperoxy-DHA, and 8,14-dihydroxy-DHA[20] ALOX12 may likewise metabolize 5(S)-HETE to 5S,12S-dihydroxyeicosatetraenoic acid (12,15-diHETE) and 15S-HETE to 14,15S-diETE.[14] While these compounds have not been thoroughly evaluated for bioactivity, 17-hydroperoxy-HDHA and the reduced product to which it is rapidly converted in cells, 17-hydroxy-HDHA, have been shown to inhibit the growth of cultured human prostate cancer cell by causing them to enter apoptosis.[22]
Animal studies
Studies on rodents lacking or made deficient in the leukocyte-type 12-lipoxygenase, Alox12 (which is most closely related to human ALOX15) implicate this enzyme in: a) preventing the development and complications of dietary-induced and/or genetically induced diabetes, adipose cell/tissue dysfunction, and obesity; b) the development of atherosclerosis and Steatohepatitis; b) regulating blood vessel contraction, dilation, pressure, remodeling, and angiogenesis; c) maintaining normal renal, neurological, and brain function; and d) the development of Alzheimer's disease.[8][9][23] In these studies, it is usually unclear which, if any metabolite(s) of Alox12 was implicated.
Preclinical studies
Metabolic syndrome
The metabolic syndrome is a clustering of at least three of five of the following medical conditions: abdominal (central) obesity, elevated blood pressure, elevated fasting plasma glucose (or overt diabetes), high serum triglycerides, and low high-density lipoprotein (HDL) levels. ALOX12 and its metabolite, 12(S)-HETE, are elevated in the islets of Langerhans of patients with type 1 diabetes or type 2 diabetes as well as in the fat cells of white adipose tissue of morbidly obese type 2 diabetic patients.[8] The PP cells (i.e. gamma cells) of the pancreas islets appear to be the major if not only site where ALOX12 is expressed in these patients.[8] The studies propose that in the islets of Langerhans ALOX12 and its 12(S)-HETE product cause excessive production of reactive oxygen species and inflammation which lead to losses in insulin-secreting beta cells and thereby types 1 and 2 diabetes and that in adipose tissue the excess in AlOX12, 12(S)-HETE, reactive oxygen species, and inflammation lead to fat cell dysfunction (also see 12-HETE#Inflammation and inflammatory diseases and 12-HETE#Diabetes). Indeed, in one study a Single-nucleotide polymorphism, rs2073438,[24] located in an intron region of the ALOX12 gene was significantly associated with total and percentage fat mass of obese compared to non-obese young Chinese men.[8][13][18] ALOX12 and 12(S)-HETE are likewise implicated in essential hypertension (see next section). Hence, ALOX12 and its metabolite(s) may contribute to the development and/or progression of obesity, diabetes, hypertension, and/or the metabolic syndrome.
Blood vessels
A selective but not totally specific inhibitor of ALOX12 reduced the growth response of cultured human endothelial cells to basic fibroblast growth factor and vascular endothelial growth factor (VEGF); this reduction was partially reversed by 12(S)-HETE; 12(S)-HETE also stimulates human prostate cell lines to produce VEGF.[19] These results suggest that growth responses to the two growth factors involves their stimulation of 12(S)-HETE production by endothelial cells and therefore that ALOX12 may be a target for reducing the neo-vascularization that promotes arthritic and cancer diseases. 12(S)-HETE also dilates human coronary microcirculation arteries by activating these vessels' smooth muscle BKca Potassium channels and is therefore suggested to be an Endothelium-derived hyperpolarizing factor.[9][19] Finally, a single nucleotide variant in the ALOX12 gene (R261Q [3957 G>A]) has been associated with essential hypertension and elevation in the urinary excretion of 12(S)-HETE in humans and may be a contributing factor for to essential hypertension (see also 12-HETE#Blood pressure).[9][25]
Alzheimer's disease
Patients with Alzheimer's disease or other forms of dementia have significantly higher levels of 12(S)-HETE (and 15(S)-HETE) in cerebrospinal fluid compared to aged-matched normal individuals. Complementary studies in rodent models bearing human mutated genes for Amyloid precursor protein and/or tau protein (see tau protein#Clinical significance) that produce Alzheimer's dementia-like syndromes implicate 12(S)-HETE, 15(S)-HETE, and a 12/15-lipoxygenase type enzyme in the development and progression of the Alzhiemer's disease-like symptoms and findings in these animals.[23] In a single study, ALOX12 mRNA was found elevated in the brain tissue of Alzheimer disease patients compared to control patients.[13] These results suggest that ALOX12 (or ALOX15) may contribute to the development of Alzheimer's disease in humans.
Cancer
Studies in prostate cancer find that human prostate cancer cell lines in culture overexpress ALOX12, overproduce 12(S)-HETE, and respond to 12(S)-HETE by increasing their rate of proliferation, increasing their cell surface expression of integrins, increasing their survival and delaying their apoptosis, and increasing their production of vascular endothelial growth factor and MMP9 (i.e. Matrix metallopeptidase 9); selective (but not entirely) specific ALOX12 inhibitors reduced the proliferation and survival of these cells (see also 12-HETE#prostate cancer). These finding suggest that ALOX12 and its 12(S)-HETE product may contribute to the growth and spread of prostate cancer in humans.[19] Recently, hypermethylation of the ALOX12 gene in prostate cancer tissue was associated with clinical predictors for a high rate of recurrent disease.[26] Some studies have found that 12(S)-HETE also promotes the growth and/or related pro-malignant behaviors of various other types of cultured cancer cell lines (see 12-HETE#Other cancers).[19] ALOX12 has been shown to interact with Keratin 5 and LMNA as screened in a yeast two-hybrid interaction library from human epidermoid carcinoma A431 cells; these proteins are candidates for regulating 12-LOX, particularly in tumor cells.[27]
Platelet function
Although first identified in human platelets, the role of ALOX12 and its major metabolites, 12(S)-HpETE and 12(S)-HETE in platelet function remains controversial and unclear; it is possible that the ALOX12-12(S)-HETE metabolic pathway has dual functions in promoting or inhibiting platelet responses depending on the stimulating agent and response studied but that inhibiting ALOX12 may ultimately prove useful in inhibiting platelet-related blood clotting.[19]
Other associations
The ALOX12 gene has susceptibility alleles (rs6502997,[28] rs312462,[29] rs6502998,[30] and rs434473[31]) for the parasitic disease, human congenital toxoplasmosis.[13][32]Fetus bearer of these alleles thus suffer an increased susceptibility to this disease.
^Nugteren DH (February 1975). "Arachidonate lipoxygenase in blood platelets". Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism. 380 (2): 299–307. doi:10.1016/0005-2760(75)90016-8. PMID804329.
^Krieg P, Fürstenberger G (March 2014). "The role of lipoxygenases in epidermis". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1841 (3): 390–400. doi:10.1016/j.bbalip.2013.08.005. PMID23954555.
^ abPace-Asciak CR (April 2015). "Pathophysiology of the hepoxilins". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1851 (4): 383–96. doi:10.1016/j.bbalip.2014.09.007. PMID25240838.
^ abcdefPorro B, Songia P, Squellerio I, Tremoli E, Cavalca V (August 2014). "Analysis, physiological and clinical significance of 12-HETE: a neglected platelet-derived 12-lipoxygenase product". Journal of Chromatography B. 964: 26–40. doi:10.1016/j.jchromb.2014.03.015. PMID24685839.
^ abWeylandt KH (November 2015). "Docosapentaenoic acid derived metabolites and mediators - The new world of lipid mediator medicine in a nutshell". European Journal of Pharmacology. 785: 108–115. doi:10.1016/j.ejphar.2015.11.002. PMID26546723.
^Serhan CN (2005). "Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution". Prostaglandins, Leukotrienes, and Essential Fatty Acids. 73 (3–4): 141–62. doi:10.1016/j.plefa.2005.05.002. PMID16005201.
^Witola WH, Liu SR, Montpetit A, Welti R, Hypolite M, Roth M, Zhou Y, Mui E, Cesbron-Delauw MF, Fournie GJ, Cavailles P, Bisanz C, Boyer K, Withers S, Noble AG, Swisher CN, Heydemann PT, Rabiah P, Muench SP, McLeod R (July 2014). "ALOX12 in human toxoplasmosis". Infection and Immunity. 82 (7): 2670–9. doi:10.1128/IAI.01505-13. PMC4097613. PMID24686056.
Flatman S, Morgan A, McDonald-Gibson RG, Davey A, Jonas GE, Slater TF (May 1988). "12-Lipoxygenase activity in human uterine cervix". Prostaglandins, Leukotrienes, and Essential Fatty Acids. 32 (2): 87–94. doi:10.1016/0952-3278(88)90101-9. PMID3406043.
Hussain H, Shornick LP, Shannon VR, Wilson JD, Funk CD, Pentland AP, Holtzman MJ (January 1994). "Epidermis contains platelet-type 12-lipoxygenase that is overexpressed in germinal layer keratinocytes in psoriasis". The American Journal of Physiology. 266 (1 Pt 1): C243-53. doi:10.1152/ajpcell.1994.266.1.C243. PMID8304420.
Arora JK, Lysz TW, Zelenka PS (June 1996). "A role for 12(S)-HETE in the response of human lens epithelial cells to epidermal growth factor and insulin". Investigative Ophthalmology & Visual Science. 37 (7): 1411–8. PMID8641843.
Hagmann W, Gao X, Timar J, Chen YQ, Strohmaier AR, Fahrenkopf C, Kagawa D, Lee M, Zacharek A, Honn KV (November 1996). "12-Lipoxygenase in A431 cells: genetic identity, modulation of expression, and intracellular localization". Experimental Cell Research. 228 (2): 197–205. doi:10.1006/excr.1996.0317. PMID8912711.
Nakamura M, Yamamoto S, Ishimura K (May 1997). "Subcellular localization of arachidonate 12-lipoxygenase and morphological effect of its overexpression on murine keratinocytes". Cell and Tissue Research. 288 (2): 327–34. doi:10.1007/s004410050818. PMID9082968. S2CID23548308.
Tornhamre S, Elmqvist A, Lindgren JA (April 2000). "15-Lipoxygenation of leukotriene A4: Studies of 12- and 15-lipoxygenase efficiency to catalyze lipoxin formation". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1484 (2–3): 298–306. doi:10.1016/S1388-1981(00)00017-2. PMID10760478.
Chen BK, Tsai TY, Huang HS, Chen LC, Chang WC, Tsai SB, Chang WC (2003). "Functional role of extracellular signal-regulated kinase activation and c-Jun induction in phorbol ester-induced promoter activation of human 12(S)-lipoxygenase gene". Journal of Biomedical Science. 9 (2): 156–65. doi:10.1159/000048212. PMID11914583. S2CID46753449.
Winer I, Normolle DP, Shureiqi I, Sondak VK, Johnson T, Su L, Brenner DE (October 2002). "Expression of 12-lipoxygenase as a biomarker for melanoma carcinogenesis". Melanoma Research. 12 (5): 429–34. doi:10.1097/00008390-200209000-00003. PMID12394183. S2CID27336312.
Fridman C, Ojopi EP, Gregório SP, Ikenaga EH, Moreno DH, Demetrio FN, Guimarães PE, Vallada HP, Gattaz WF, Dias Neto E (February 2003). "Association of a new polymorphism in ALOX12 gene with bipolar disorder". European Archives of Psychiatry and Clinical Neuroscience. 253 (1): 40–3. doi:10.1007/s00406-003-0404-y. PMID12664313. S2CID21064663.
Toyota Yaris VersoInformasiProdusenToyotaJuga disebutToyota Fun CargoMasa produksi1999-2006PerakitanToyota City, JepangBodi & rangkaKelasMini MPVBentuk kerangka5-door vanTata letakMesin depan, penggerak roda depan4WDPenyalur dayaMesin1298 cc 2NZ-FE I4 (NCP20/22)1497 cc 1NZ-FE I4 (NCP21/25)1364 cc 1ND-TV td I4 (NLP20/22)KronologiPenerusToyota Ractis (Japan)Toyota Verso-S (Europe)Toyota Space Verso (Israel) Toyota Yaris Verso adalah MPV mini yang diproduksi Toyota M...
Amir Hossein Sadeghi Informasi pribadiNama lengkap Amir Hossein SadeghiTanggal lahir 6 September 1981 (umur 42)Tempat lahir Tehran, IranTinggi 1,88 m (6 ft 2 in)Posisi bermain BekInformasi klubKlub saat ini EsteghlalNomor 4Karier junior1995–1999 Shahin1999–2001 Moghvemat Tehran2001–2003 EsteghlalKarier senior*Tahun Tim Tampil (Gol)2003–2008 Esteghlal 112 (7)2008–2009 Mes 30 (1)2009–2011 Esteghlal 54 (5)2011–2012 Tractor Sazi 31 (2)2012– Esteghlal 29 (0)Tim...
Raden Soewondo RanoewidjojoPotret sebagai anggota Majelis Permusyawaratan Rakyat Republik Indonesia, 1972 Gubernur Jawa Timur Ke-5Masa jabatan3 Desember 1959 – 31 Januari 1963WakilMoch. Wijono PendahuluR. T. A. MilonoPenggantiMoch. Wijono Informasi pribadiLahir(1905-10-27)27 Oktober 1905Pasuruan, Hindia BelandaMeninggal8 Januari 1992(1992-01-08) (umur 86)KebangsaanIndonesiaPartai politikPartai GolkarSunting kotak info • L • B Raden Soewondo Ranoewidjojo (27 O...
Daftar keuskupan di Kepulauan Solomon adalah daftar keuskupan Gereja Katolik yang berada di Kepulauan Solomon. Seluruh keuskupan di Kepulauan Solomon merupakan Gereja Latin. Para uskup di Kepulauan Solomon bergabung bersama para uskup di Papua Nugini dalam Konferensi Waligereja Papua Nugini dan Kepulauan Solomon. Per Januari 2023, terdapat 3 buah keuskupan di Kepulauan Solomon, di mana 1 merupakan keuskupan agung dan 2 merupakan keuskupan sufragan. Daftar keuskupan Provinsi Gerejawi Honiara K...
Chronologies Construction du mur de l'Atlantique en septembre 1943.Chronologie de la Seconde Guerre mondiale Jan - Fév - Mar - Avr - Mai - Juin Juil - Aoû - Sep - Oct - Nov - Déc Chronologie dans le monde 1940 1941 1942 1943 1944 1945 1946Décennies :1910 1920 1930 1940 1950 1960 1970Siècles :XVIIIe XIXe XXe XXIe XXIIeMillénaires :-Ier Ier IIe IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin,...
Come leggere il tassoboxDirofilaria immitis Cuore di cane da pastore tedesco infestato da Dirofilaria immitis Classificazione scientifica Dominio Eukaryota Regno Animalia Sottoregno Eumetazoa Ramo Bilateria Superphylum Platyzoa Phylum Nematoda Classe Secernentea Sottoclasse Spiruria Ordine Spirurida Superfamiglia Filarioidea Famiglia Onchocercidae Genere Dirofilaria Specie D. immitis Nomenclatura binomiale Dirofilaria immitisLeidy, 1856 Microfilaria ad un ingrandimento 400x al microscopio ot...
Church in EnglandSt Augustine's, WhittonChurch of St Augustine of Canterbury, WhittonThe church in 2009LocationHospital Bridge Road, Whitton, London TW2 6DECountryEngland, United KingdomDenominationChurch of EnglandWebsitewww.st-augustine-of-canterbury-whitton.orgHistoryFounded1935DedicationSt Augustine of CanterburyArchitectureYears built1958AdministrationDioceseLONDONArchdeaconryMiddlesexDeaneryHamptonClergyMinister(s)The Revd Canon John Kafwanka K[1] St Augustine's, Whitton, on Ho...
Stenocorus Stenocorus meridianus Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Subfamili: Lepturinae Tribus: Rhagiini Genus: Stenocorus Stenocorus adalah genus kumbang tanduk panjang yang berasal dari famili Cerambycidae. Genus ini juga merupakan bagian dari ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang dalam genus ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada bat...
Not to be confused with Stratford, Connecticut; Stafford, Connecticut; or Stanford, California. City in Connecticut, United StatesStamfordCityClockwise, from top: Downtown Stamford, Harbor Point, Stamford Museum & Nature Center, Stamford Center for the Arts, Fish Church, One Stamford Forum, Stamford Transportation Center, Old Town Hall, One Landmark Square FlagSealNickname(s): The City That Works, Lock CityMotto: Innovating Since 1641 Fairfield County and Connecticut W...
Ghulam Ishaq Khan Nama dalam bahasa asli(ur) غلام اسحاق خان BiografiKelahiran20 Januari 1915 Bannu District Kematian27 Oktober 2006 (91 tahun)Peshawar Penyebab kematianRadang paru-paru 7 Daftar Presiden Pakistan 17 Agustus 1988 – 18 Juli 1993 ← Muhammad Zia-ul-Haq – Wasim Sajjad → Chairman of the Senate of Pakistan 21 Maret 1985 – 12 Desember 1988 ← Khan Habibullah Khan – Wasim Sajjad → Daftar Menteri Keuangan Pakist...
Chilean television channel Television channel ChilevisiónCountryChileBroadcast areaChileHeadquartersSantiago, ChileProgrammingLanguage(s)SpanishPicture format1080i HDTV (downscaled to 480i for the SDTV feed)OwnershipOwnerParamount Networks Americas(Paramount International Networks)HistoryLaunched4 November 1960; 63 years ago (1960-11-04)[1]Former namesCanal 9 de Televisión de la Universidad de Chile (1960–1980)Teleonce (1980–1983)Universidad de Chile Televisió...
Village in Estonia Village in Tartu County, EstoniaTorilaVillageCountry EstoniaCountyTartu CountyParishPeipsiääre ParishTime zoneUTC+2 (EET) • Summer (DST)UTC+3 (EEST) Torila is a village in Peipsiääre Parish, Tartu County in eastern Estonia.[1] Composer and conductor Eduard Tubin (1905–1982) was born in Torila. References ^ Classification of Estonian administrative units and settlements 2014 (retrieved 28 July 2021) 58°39′N 27°07′E / 58.65...
2019 song by Ed Sheeran featuring Paulo Londra and DaveThis article is about Ed Sheeran song. For the song by B.o.B and Bruno Mars, see, see Nothin' on You. Nothing on YouPromotional single by Ed Sheeran featuring Paulo Londra and Davefrom the album No.6 Collaborations Project LanguageEnglishSpanishReleased12 July 2019 (2019-07-12)Length3:20Label Asylum Atlantic Songwriter(s) Ed Sheeran Paulo Londra David Omoregie Fred Gibson Daniel Oviedo Cristian Salazar Producer(s) Fred Gibs...
Office of Strategic ServicesDistintivo dell'OSS SiglaOSS Stato Stati Uniti Tiposervizio segreto Istituito13 giugno 1942 Soppresso20 settembre 1945 SuccessoreCIA Numero di membri13 000 stimati[1] Modifica dati su Wikidata · Manuale L'Office of Strategic Services (OSS) era un servizio segreto statunitense operante nel periodo della seconda guerra mondiale. Fu il precursore della CIA. Fu istituito nel giugno 1942 con lo scopo di coordinare la gestione della raccolta d...
Pour l’article homonyme, voir Lapponia. Lapponia Chanson de Monica Aspelund (fi) auConcours Eurovision de la chanson 1977extrait de l'album Lapponia Enregistré 1977 Durée 2:46 Langue Finnois Genre Pop Auteur Monica Aspelund Compositeur Aarno Raninen (fi) Producteur Antero Päiväläinen Label RCA Victor Classement 10e (50 points) Chansons représentant la Finlande au Concours Eurovision de la chanson Pump-Pump(1976) Anna rakkaudelle tilaisuus(1978)modifier Lapponia est la ...
Human settlement in EnglandCurbridgeSt John the Baptist parish churchCurbridgeLocation within OxfordshirePopulation529 (2011 Census)OS grid referenceSP3308Civil parishCurbridgeDistrictWest OxfordshireShire countyOxfordshireRegionSouth EastCountryEnglandSovereign stateUnited KingdomPost townWitneyPostcode districtOX29Dialling code01993PoliceThames ValleyFireOxfordshireAmbulanceSouth Central UK ParliamentWitneyWebsiteCurbridge Village Website List of pla...
International athletics championship eventAthletics at the II Micronesian GamesDatesJulyHost citySan Antonio, Saipan, Northern Mariana Islands LevelSeniorEvents27 (14 men, 13 women)← 1969 Saipan 1994 Mangilao → 1990 Micronesian Games Athletics competitions at the 1990 Micronesian Games were held in San Antonio, Saipan, Northern Mariana Islands, in July, 1990. A total of 27 events were contested, 14 by men and 13 by women. Medal summary Medal winners and their results were publishe...
Anstalten Kumla Anstalten Kumla på 1970-taletOrtKumlaÖppnad1965TypSluten anstaltFängelsechefJacques MwepuAntal anställda450[1]Säkerhetsklass1[1]Antal platserTotalt517[1] (2021) Anstalten Kumla, populärt känd som Kumlabunkern, är en sluten kriminalvårdsanstalt utanför Kumla i Närke. Anstalten är Sveriges största och är tillsammans med Anstalten Hall, Anstalten Norrtälje, Anstalten Salberga, Anstalten Hällby, Anstalten Tidaholm och Anstalten Saltvik de enda anstalterna i Sverig...
Historic site in Buncombe County, North CarolinaZebulon B. Vance BirthplaceThe Vance house was rebuilt in 1960-61 around the original 1790s brick fireplaceLocation911 Reems Creek Rd., Weaverville, Buncombe County, North CarolinaCoordinates35°42′4″N 82°29′47″W / 35.70111°N 82.49639°W / 35.70111; -82.49639Built1790sLocation of Zebulon B. Vance Birthplace in North CarolinaShow map of North CarolinaZebulon B. Vance Birthplace (the United States)Show map of the ...
Type of potential energy Image depicting Earth's gravitational field. Objects accelerate towards the Earth, thus losing their gravitational energy and transforming it into kinetic energy. Gravitational energy or gravitational potential energy is the potential energy a massive object has due to its position in a gravitational field. It is the mechanical work done by the gravitational force to bring the mass from a chosen reference point (often an infinite distance from the mass generating the ...