Read other articles:
Political party in United Kingdom National Liberal Party LeaderDavid Lloyd GeorgeFounded19 January 1922 (1922-01-19)Dissolved13 November 1923 (1923-11-13)Merger ofCoalition Liberals, National Democratic PartyMerged intoLiberal PartyHeadquartersLondonNewspaperLloyd George Liberal MagazineIdeologyBritish nationalismNew liberalismFree tradePolitical positionCentrePolitics of United KingdomPolitical partiesElections The National Liberal Party was ...
2020 single by King Von featuring Lil Durk All These NiggasSingle by King Von featuring Lil Durkfrom the album Welcome to O'Block ReleasedAugust 5, 2020Genre Gangsta rap drill Length2:24Label Only the Family Empire Songwriter(s) Dayvon Bennett Durk Banks Producer(s)Chopsquad DJKing Von singles chronology Why He Told (2020) All These Niggas (2020) How It Go (2020) Lil Durk singles chronology Gucci Gucci(2020) All These Niggas(2020) Painless 2(2020) Music videoAll These Niggas on YouTub...
A raffee sail is a triangular topsail carried aboard certain sailing ships. Originally used in Ancient Rome to maneuver ships at sea,[1] the raffee was eventually implemented as a downwind sail set below a square-rigged yard to fill in areas needed for light airs. In later pilot schooners, it was a triangular sail set above a yard from the masthead. Today a raffee is any square downwind sail set off the mast at a right angle.[2] References ^ L. Sprague de Campe (1963). The Anc...
Pour les autres significations, voir Châteldon (eau minérale). Châteldon Châteldon et son château. Héraldique Administration Pays France Région Auvergne-Rhône-Alpes Département Puy-de-Dôme Arrondissement Thiers Intercommunalité Communauté de communes Thiers Dore et Montagne Maire Mandat Tony Bernard 2020-2026 Code postal 63290 Code commune 63102 Démographie Populationmunicipale 764 hab. (2021 ) Densité 27 hab./km2 Géographie Coordonnées 45° 58′ 39″...
Joseph KosuthLahir31 Januari 1945 (umur 79)Toledo, OhioKebangsaanAmerika SerikatPendidikanSchool of Visual Arts, New York CityDikenal atasSeni konseptual Karya Kosuth Batas-Batas Yang Tidak Terbatas di Queen's Square, Yokohama, Jepang, 1997. Joseph Kosuth (/kəˈsuːt, -ˈsuːθ/; lahir 31 Januari, 1945), seorang seniman konseptual asal Amerika Serikat, tinggal di New York dan London,[1] setelah sebelumnya pernah berpindah-pindah di berbagai kota di Eropa, termasuk Ghent dan Rom...
Part of a series on theCulture of Italy History Citizenship Currency and coinage Economy Fashion Flags Genetic Historic states Judaism LGBT Military Music Name Postage Railway People Languages Italian Arbëresh Algherese Slavomolisano Aostan French Friulian Gallo-Italic of Sicily Italian Germanic Griko Ladin Occitan Romani Sardinian Slovene Wenzhounese Traditions Mythology and folklore Folk dance Folk music Cuisine Abruzzese Apulian Arbëreshë Corsican Ligurian Lombard Mantuan Lucanian Neap...
Sikhism in DenmarkSikhisme i DanmarkTotal population5,000Regions with significant populationsCopenhagen · BrondbyReligionsSikhismLanguagesPunjabi · Danish Part of a series onSikhism People Topics Outline History Glossary Sikh gurus Guru Nanak Guru Angad Guru Amar Das Guru Ram Das Guru Arjan Guru Hargobind Guru Har Rai Guru Har Krishan Guru Tegh Bahadur Guru Gobind Singh Guru Granth Sahib Selected revered saints Bhagat Kabir Bhagat Ravidas Bhagat Farid Bhagat Raman...
Halo, Pratama26. Selamat datang di Wikipedia bahasa Indonesia! Memulai Memulai Para pengguna baru dapat melihat halaman Pengantar Wikipedia terlebih dahulu. Anda bisa mengucapkan selamat datang kepada Wikipediawan lainnya di Halaman perkenalan. Bingung mulai menjelajah dari mana? Kunjungi Halaman sembarang. Untuk mencoba-coba menyunting, silakan gunakan bak pasir. Baca juga aturan yang disederhanakan sebelum melanjutkan. Ini adalah hal-hal mendasar yang perlu diketahui oleh semua penyunting ...
Mosque in Aligarh, India This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sir Syed Mosque – news · newspapers · books · scholar · JSTOR (March 2020) (Learn how and when to remove this message) Jama Masjid/Sir Syed MosqueReligionAffiliationIslamLocationLocationAligarh Muslim University, Aligarh, Uttar PradeshC...
Compact non-orientable two-dimensional manifold The fundamental polygon of the projective plane. The Möbius strip with a single edge, can be closed into a projective plane by gluing opposite open edges together. In comparison, the Klein bottle is a Möbius strip closed into a cylinder. In mathematics, the real projective plane is an example of a compact non-orientable two-dimensional manifold; in other words, a one-sided surface. It cannot be embedded in standard three-dimensional space with...
Place in La Vega, Dominican RepublicConstanzaAerial view of ConstanzaConstanzaCoordinates: 18°54′36″N 70°45′0″W / 18.91000°N 70.75000°W / 18.91000; -70.75000Country Dominican RepublicProvinceLa VegaArea[1] • Total848.79 km2 (327.72 sq mi)Elevation[2]1,164 m (3,819 ft)Population (2010)[3] • Total59,052 • Density70/km2 (180/sq mi) • Urban25,683 ...
قسطرة تاجية معلومات عامة من أنواع قسطرة قلبية تعديل مصدري - تعديل القسطرة التاجية أو القسطرة الإكليلية أو القسطرة القلبية (بالإنجليزية: Coronary catheterization) هي نوع من الإجراءات طفيفة التوغل التي تهدف إلى دخول الدوران التاجي والأجواف القلبية المملوءة بالدم باستخدام ...
Wakil Bupati KonawePetahanaLowongsejak 5 Agustus 2021Masa jabatan5 tahun dan dapat dipilih kembali untuk satu kali masa jabatanDibentuk2003; 21 tahun lalu (2003)Pejabat pertamaTony HerbiansyahSitus webSitus web resmi Berikut ini adalah daftar Wakil Bupati Konawe dari masa ke masa. Nomor urut Wakil Bupati Potret Partai Awal Akhir Masa jabatan Periode Bupati Ref. 1 Tony Herbiansyah(lahir 1959) Non Partai 2003 2008 4–5 tahun 9 Lukman Abunawas 2 Masmuddin Non Partai 17 Juni 200...
لمعانٍ أخرى، طالع قياس (توضيح). قياسمعلومات عامةصنف فرعي من تقدير جزء من علم القياس ممثلة بـ measurement uncertainty (en) خطأ الملاحظة تعديل - تعديل مصدري - تعديل ويكي بيانات شريط قياس وحداته البوصة. «قطار قياس» لفحص قضبان السكك الحديدية القياس عملية قرن الأعداد بالكميات الفيزيائ�...
Persebaran orang Albania Albania Raya adalah konsep iredentis yang ingin menyatukan wilayah yang dianggap sebagai tanah air bangsa Albania.[1] Maka dari itu, selain Republik Albania, para pendukung konsep ini ingin menyatukan juga wilayah Kosovo, lembah Preševo, wilayah Montenegro selatan, Yunani barat laut (Thesprotia dan Preveza, disebut Chameria oleh orang Albania), serta bagian barat Republik Makedonia. Menurut laporan Gallup Balkan Monitor pada tahun 2010, gagasan Albania Raya d...
Questa voce sull'argomento geologia è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Eruzione del Vesuvio del 1906Apice dell'attività esplosivaVulcanoVesuvio Stato Italia Comuni interessatiBoscotrecase, Castellammare di Stabia, Cercola, Ottaviano, Portici, San Giuseppe Vesuviano, San Gennaro Vesuviano, Sarno, Somma Vesuviana, Poggiomarino, Torre Annunziata, Torre del Greco, Napoli Eventi correlati...
Agency of the European Union European Environment AgencyAgency overviewFormed30 October 1993 (1993-10-30)JurisdictionEuropean UnionHeadquartersCopenhagen, Denmark55°40′52″N 12°35′12″E / 55.681208°N 12.586609°E / 55.681208; 12.586609Agency executivesLeena Ylä-Mononen, Executive DirectorLaura Burke, Chairwoman of Management BoardKey documentRegulation (EC) No 401/2009Websitewww.eea.europa.eu MapCopenhagenEuropean Environment Agency (European U...
Equivalence between strongly orientable graphs and bridgeless graphs This article is about Robbins' theorem in graph theory. For Robin's theorem in number theory, see divisor function. In graph theory, Robbins' theorem, named after Herbert Robbins (1939), states that the graphs that have strong orientations are exactly the 2-edge-connected graphs. That is, it is possible to choose a direction for each edge of an undirected graph G, turning it into a directed graph that has a path fro...
この項目に含まれる文字「屠」は、オペレーティングシステムやブラウザなどの環境により表示が異なります。 USDA inspection of pig 屠畜場(とちくじょう、漢字制限により「と畜場」とも)は、牛や豚、馬などの家畜を殺して(屠殺して)解体し、食肉に加工する施設の名称である。屠殺場、食肉処理場[1]、食肉解体施設、食肉工場などともいう。 日本 日本のと畜...
NACS GOTTA ME!- ナックスガタメ! -ジャンル バラエティ放送方式 録音放送期間 2001年1月8日 - 2005年9月24日放送時間 日曜未明 0:00 - 1:00(土曜深夜)放送局 AIR-G'パーソナリティ TEAM-NACSテンプレートを表示 NACS GOTTA ME!(なっくすがため)は、2001年1月8日から2005年9月24日まで、エフエム北海道(AIR-G')で放送していた、ラジオ番組。TEAM NACSの冠番組でもある。通称「ガタメ」。開...