Read other articles:
2002 American TV series or program The GlowGenrePsychological thrillerWritten byGary ShermanDirected byCraig R. BaxleyStarringDean CainPortia de RossiHal LindenDina MerrillJoseph CampanellaMusic byGary ChangCountry of originUnited StatesOriginal languageEnglishProductionExecutive producersArthur M. SarkissianLaura ArmstrongCharles FreericksGary ShermanProducerIain PatersonCinematographyJoão FernandesEditorRoss AlbertRunning time89 minutesProduction companiesFox Television StudiosNew Line Tel...
Giovanni Gronchi Presiden Republik Italia Ke-3Masa jabatan11 Mei 1955 – 11 Mei 1962 PendahuluLuigi EinaudiPenggantiAntonio Segni Informasi pribadiLahir10 September 1887Pontedera, ItaliaMeninggal17 Oktober 1978(1978-10-17) (umur 91)Roma, ItaliaKebangsaanItalianPartai politikDemokrasi KristenSuami/istriCarla BissatiniSunting kotak info • L • B Giovanni Gronchi (30 September 1945-30 September 1962adalah politikus Italia yang menjadi Presiden Republik Italia kedua 19...
Piala Liga Inggris 2012–20132012–13 Football League CupNegara Inggris WalesTanggal penyelenggaraan11 Agustus 2012 s.d. 24 Februari 2013Jumlah peserta92Juara bertahanLiverpoolJuaraSwansea City(gelar ke-1)Tempat keduaBradford CityJumlah pertandingan91Jumlah gol321 (3.53 per pertandingan)Pencetak gol terbanyakTheo Walcott(5 gol)[1]← 2011–2012 2013–2014 → Piala Liga Inggris 2012–2013 adalah edisi ke-53 penyelenggaraan Piala Liga Inggris, sebuah kompetisi dengan sis...
イスラームにおける結婚(イスラームにおけるけっこん)とは、二者の間で行われる法的な契約である。新郎新婦は自身の自由な意思で結婚に同意する。口頭または紙面での規則に従った拘束的な契約は、イスラームの結婚で不可欠だと考えられており、新郎と新婦の権利と責任の概要を示している[1]。イスラームにおける離婚は様々な形をとることができ、個�...
† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...
Marathi cinema All-time 1910s 1910-1919 1920s 1920 1921 1922 1923 19241925 1926 1927 1928 1929 1930s 1930 1931 1932 1933 19341935 1936 1937 1938 1939 1940s 1940 1941 1942 1943 19441945 1946 1947 1948 1949 1950s 1950 1951 1952 1953 19541955 1956 1957 1958 1959 1960s 1960 1961 1962 1963 19641965 1966 1967 1968 1969 1970s 1970 1971 1972 1973 19741975 1976 1977 1978 1979 1980s 1980 1981 1982 1983 19841985 1986 1987 1988 1989 1990s 1990 1991 1992 1993 19941995 1996 1997 1998 1999 2000s 2000 2001 ...
Dewan Perwakilan Rakyat Daerah Kabupaten Wonosobo ꦢꦺꦮꦤ꧀ꦥꦼꦂꦮꦏꦶꦭꦤ꧀ꦫꦏ꧀ꦪꦠ꧀ꦭꦭꦢꦤ꧀ ꦏꦧꦸꦥꦠꦺꦤ꧀ ꦮꦤꦱꦧDewan Perwakilan RakyatKabupaten Wonosobo2019-2024JenisJenisUnikameral SejarahSesi baru dimulai12 Agustus 2019PimpinanKetuaH. Eko Prasetyo Heru Wibowo, S.H. (PDI-P) sejak 16 November 2020 Wakil Ketua IH. Amir Husein (PKB) sejak 16 November 2020 Wakil Ketua IISumardiyo, S.E. (Gerindra) sejak 23 September 2019 Wakil Ketua ...
ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...
2012 Samsung Mobile 500 Race details[1][2][3] Race 7 of 36 in the 2012 NASCAR Sprint Cup Series Date April 14, 2012 (2012-04-14)Location Texas Motor Speedway in Fort Worth, TexasCourse Permanent racing facility1.5 mi (2.4 km)Distance 334 laps, 501 mi (806.3 km)Weather Scattered thunderstorms; wind out of the south at 21 miles per hour (34 km/h).Average speed 160.577 miles per hour (258.424 km/h)Pole positionDriver Martin Truex Jr. Michael Waltr...
Pour les articles homonymes, voir fil. Le fil est un corps constitué de différents matériaux principalement employé dans le tissage, la corderie et la câblerie. Selon les matériaux, il est obtenu par différents procédés industriels. Unité L'unité est la fibre. Dans le cas des fils synthétiques, l'unité peut être moléculaire ou atomique, donc des fils extrêmement fins. Propriétés Les fils sont résistants à la traction. Fils naturels Le fil est originairement la partie long...
此條目介紹的是馬來西亞的政黨。关于同名已解散的香港政黨,请见「希望聯盟 (香港政黨)」。 希望联盟Pakatan HarapanAlliance of Hope希望联盟标志马来语名称Pakatan Harapanڤاكتن هارڤن替代语言:Aliansi Harapan英语名称Alliance of Hope替代语言:Pakatan Harapan Plus华语名称希望联盟Xīwàng liánméng淡米尔名称நம்பிக்கை கூட்டணி简称PH、希盟主席安华共同主席旺�...
1998 Mongolian filmState of DogsNohoin OronDirected byPeter BrosensDorjkhandyn TurmunkhWritten byPeter BrosensDorjkhandyn TurmunkhProduced byPeter Brosens (Inti Films)Jan Ewout Ruiter (Balthazar Film)Kristiina PervilaAlok Nandi IStarringNyam DagyrantzBaatar GalsansukhPurevdavaa OyungerelJamyansuren OyunstingelNarrated byMaria von HelandCinematographyHeiki FärmSakhya ByambaMusic byCharo CalvoRelease date December 7, 1998 (1998-12-07) Running time91 minutesCountryMongoliaLanguag...
Japanese professional wrestler This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Ken Ohka – news · newspapers · books · scholar · JSTOR (March 2021) (Learn how and when to remove this message) Ken...
Великое китайское землетрясение 1556 года 34°30′ с. ш. 109°42′ в. д.HGЯO Дата и время 23 января 1556 года[1] Магнитуда по шкале Рихтера 8,4 Mw Моментная магнитуда 8 Глубина гипоцентра 32 км Затронутые страны (регионы) Империя Мин Цунами нет Пострадавшие 820 000 - 830 000 человек...
Member of the 20th Politburo of the Chinese Communist Party since 2022 In this Chinese name, the family name is Wang. Wang Yi王毅Wang in 2023Director of the Office of the Central Foreign Affairs CommissionIncumbentAssumed office 1 January 2023General SecretaryXi JinpingForeign MinisterQin GangHimselfPreceded byYang JiechiMinister of Foreign AffairsIncumbentAssumed office 25 July 2023PremierLi QiangParty SecretaryQi YuPreceded byQin GangIn office16 March 2013 – 30 December...
You can help expand this article with text translated from the corresponding article in Vietnamese. (March 2009) Click [show] for important translation instructions. View a machine-translated version of the Vietnamese article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English ...
Political party in the London Borough of Tower Hamlets Aspire LeaderLutfur RahmanTreasurerJahed ChoudhuryNominating OfficerLilian CollinsFounded26 January 2018Preceded byTower Hamlets FirstHeadquarters28 Castlemain StreetWhitechapelLondonIdeologyDemocratic socialismPopulism[1][2][3]Political positionLeft-wing[4]Tower Hamlets Council24 / 45Politics of the United KingdomPolitical partiesElections Aspire is a political party in the London Borough of Towe...
Indian politician Koppula EshwarMinistry of Scheduled Castes Development, Tribal Welfare, BC Welfare, Minority Welfare, Disabled Welfare and Senior Citizens WelfareIn office2019 – 4 December 2023ConstituencyDharmapuri, Jagityala, Telangana Personal detailsBorn20 April 1959GodavarikhaniPolitical partyTelangana Rashtra SamithiResidenceKarimnagarWebsitehttps://koppulaeshwar.officialpress.in/ Koppula Eshwar is an Indian politician serving as the Minister of All Welfare Departments, BC ...
Badan Penelitian dan Pengembangan Kementerian Dalam Negeri Republik IndonesiaLogo Kementerian Dalam Negeri Republik IndonesiaGambaran umumDasar hukumPeraturan Presiden Nomor 11 Tahun 2015Dibubarkan30 Desember 2021 (2021-12-30)Nomenklatur penggantiBadan Strategi Kebijakan Dalam Negeri (BSKDN)Pegawai154 orang (2014)[1]Susunan organisasiKepala BadanYusharto Huntoyungo[2]Kantor pusatJl. Kramat Raya No. 132 Jakarta PusatSitus webbpp.kemendagri.go.id Badan Penelitian dan P...
Geometria euclidea e geometria del taxi: le linee rossa, blu e gialla nella geometria del taxi hanno tutte la stessa lunghezza (12). La linea verde ha lunghezza 6 2 ≈ 8 , 4853 {\displaystyle 6{\sqrt {2}}\approx 8,4853} nella geometria euclidea, ma continua ad avere lunghezza 12 in quella del taxi (non è quindi più corta delle altre). In matematica, la geometria del taxi o distanza di Manhattan (in inglese Taxicab geometry o Manhattan distance) è un concetto geometrico introdotto da ...