إذا اعتبرنا أن t الزمن ، وأن sعدد مركب يساوي : s = σ + jω
فإن تحويل لابلاس الذي نرمز له هنا بالرمز L هو عملية تحويل إشارة أو دالة من دالة بمتغير هو الزمن إلى دالة بمتغير آخر هو التردد، أما الأصح هو أنها مؤثر يحول دالة بمتغير قيمته عدد حقيقي إلى دالة بمتغير قيمته (عدد مركب).
تحويل الدالة من متغير في الزمن إلى دالة في متغير للمسافة مثلا
مثال ذلك
تحويل السرعة المتغيرة التي هي دالة في الزمن
إلى دالة في المسافة
تحويل درجة الحرارة من دالة في الزمن إلى دالة في درجة حرارة المصدر
و دالة التحويل L أي التي تحول دالة بمتغير هو الزمن إلى دالة بمتغير هو التردد يمكن حسابها على النحو الآتي:
و كما يوجد تحويل لابلاس فإنه يوجد تحويل لابلاس معاكس، ويُرمز له بالرمز وهو يقوم بالتحويل العكسي لتحويل لابلاس أي من دالة بمتغير قيمته عدد مركب إلى دالة بمتغير قيمته عدد حقيقي، ويمكن حساب هذه العملية على النحو التالي:
خصائص ونظريات
هناك مجموعة من الخصائص لتحويل لابلاس لابد من معرفتها لتسهيل استخدامه وبخاصة في تحليل النظم الخطية، من أهمها حالات التفاضل والتكامل.
والجدول التالي يبين ملخصا لهذه الخصائص والنظريات:
إذا كان هناك دالتين:
(f(t و (g(t
وكان تحويل لابلاس لهما هو:
(F(s و (G(s
وفيما يلي بيان تلك الخصائص والنظريات transform:[2]
مع اعتبار قيمة (0)x أي أخذ ما يسمى بالشروط البدئية بعين الاعتبار:
و
إيجاد الحل مباشرة لهاته المعادلة التفاضلية (التي قد تكون مثلا معادلة جسم يقوم بحركة ما أي أنها نموذج عنه) قد يكون صعبا، فما العمل؟
الحل هو تحويل المعادلة عن طريق تحويل لابلاس فتصبح المعادلة كالتالي:
و بذلك كل ما تبقى فعله الآن هو حل المعادلة البسيطة وهي معادلة متعددة الحدود من الدرجة الثانية باستخدام تحويل لابلاس العكسي.
طرق رياضياتية مساعدة
كثيرا ما نحتاج إلى استخدام طريقة إكمال المربع عند حساب تحويلات لابلاس العسكية، وذلك لوضع الدالة المراد تحويلها في صورة مربعة تناسب أحد الصور الموجودة بالجدول السابق.