يصنف سلوك المحرك النفاث وتأثيره على كل من الطائرةوالبيئة، في تخصصين مختلفين من التخصصات الهندسية. على سبيل المثال، تصنف الانبعاثات تحت مجموعة الاحتراق، ويصنف منشأ الاهتزازات المتنقلة لهيكل الطائرة تحت ديناميكا العمود الدوار.
تعريف الأداء
يعرف أداء المحرك النفاث على أنه فهم كيفية إنتاج تدفقوقود معين لكمية محدودة من الدفع عند نقطة معينة في دورة الطيران. الأداء هو موضوع له تخصص خاص داخل فرق تطوير وتصميم محركات الطائرات، كما أنه فهم للضوضاء الناتجة والانبعاثات بواسطة المتخصصين المعنيين بذلك في فرق أخرى.
يمكن تعريف مطابقة أجزاء المحرك على أنها التصميم وتحديد حجم الأجزاء، والتحكم في خصائص التشغيل [2] لكل من الضاغطوالتربينة، والفوهة الدافعة. ولتحسين الفهم المطلوب لمطابقة مكونات المحرك بكفاءة، بُنيت ثلاث ملاحظات أساسية بناء على ما يلي:[3]
تتحدد قيم معينة للدفع واستهلاك الوقود بناء على العملاء المحتملين للطائرات، و سيتم استنتاج هذه القيم من خلال خطوات تفصيلية في جزء "معادلات أداء نقطة التصميم" و "الحساب المبسط لنقطة خارج التصميم". و سيتم توضيح حالة "خارج التصميم" بشكل عام.
تستهلك الطائرة قدرة هوائية وكهربيةوهيدروليكية، في مقابل بعض الوقود المزودة به الطائرة. و تذكر هذه المعلومات في جزء "تأثيرات التركيب". كما تعرف هذه التأثيرات بأنها الاختلاف بين أداء المحرك غير المركب (كما تم قياسه على منصة اختبار) والمحرك المركب في طائرة.
عندما يُسحب هواء من الضاغط لتبريد التربينة، يكون لذلك أثر عكسي على كمية الوقود اللازمة لاعطاء الدفع. و سنتناول هذه الجزئية في "استنزاف التبريد". في جزء "تحسينات الدورة" يتم تناول تأثير تغييرات التصميم الأساسي على المحرك، كزيادة نسبة الضغط مثلا، و درجة حرارة الدخول للتربينة. كما نتناول أيضا طرق زيادة نسب الضغط. و في جزء"النموذج العابر" يتم تناول تأثيرات التزود بالوقود الزائد عن الحد و المنخفض عن الحد، و الذي يحدث تغييرات في الدفع المطلوب.
كما سيكون هناك تفسير لمخطط هاسك التوضيحي، الذي يعتبر طريقة موجزة لتلخيص أداء المحرك. و يتقيد الدفع المتاح بحدود درجة حرارةالتربينة عند درجات الحرارة المحيطة المرتفعة، كما هو موضح في أجزاء "تقييم الأداء"
في المثال السابق، تكون الطائرة ثابتة على الأرض، لذلك تنطبق نقطة 0 (الحالة المحيطة بالطائرة من حيث الضغطودرجة الحرارة) مع نقطة 1 (حالة الدخول للمحرك)، و هنا لم تبين نقطة 1 على الرسم.
الدخول -سحب المائع لداخل المحرك- (من 1 إلى 0)
في المثال السابق، يتم فرض عدم وجود فقد في ضغط الدخول، لذلك تنطبق نقطة 1 و 2.
نظريا، يمكن وصف نقطة التصميم لأداء المحرك أنها أي مزيج من ظروف الطيران التي يتعرض لها المحرك وإجراء الخنق. و مع ذلك، و في العادة، ترتبط نقطة التصميم بأكبر تدفق صحيح[لغات أخرى] عند الدخول لنظام الانضغاط (مثال: أقصى تسلق يكون عند 0.85 ماخ، و 35000قدم، عند الظروف الجوية القياسية).
بمساواة قدرة التربينةوالضاغط، و باهمال أي قدرة مسحوبة (لتشغيل مولد أو مضخة على سبيل المثال)، نحصل على المعادلة التالية:
في بعض الأحيان، يتم الفرض للتبسيط أن كتلة الوقود المضاف تكون تعويض عن كتلة الهواء المستنزف الضاغط، أي أن تدفق الكتلة ثابت خلال الدورة.
يمكن حساب نسبة الضغط خلال التربينة، بفرض كفاءة عامة، من المعادلة التالية:
و من الواضح أن:
الأنبوب النفاث
بما أنه، تحت شروط الحالة المستقرة للسريان، لا يوجد شغل أو فقد للحرارة في الأنبوب النفاث، فإنه يمكن القول أن:
ومع ذلك ، يجب حساب الفقد في الضغط خلال الأنبوب النفاث، كالتالي:
الفوهة
هل تعرضت الفوهة للاختناق؟ تتعرض الفوهة للاختناق عندما يكون رقم ماخ عند حلق الفوهة يساوي 1. و يحدث هذا عندما تصل نسبة الضغط في الفوهة للقيمة الحرجة أو تتجاوزها.
بشكل عام، يكون هناك احتكاك سحب للرام (بالإنجليزية: Ram drag)(الرام: ناشر في مدخل المحرك لزيادة الضغط) نتيجة دخول الهواء من مدخل المحرك ، و يتم التعبير عن قوة الاحتكاك كالتالي:
الدفع الصافي
بعد خصم قوة الاحتكاك للرام من قوة الدفع الكلي، يمكن التعبير عن الدفع الصافي بالمعادلة التالية:
طريقة الحساب السابقة المستخدمة هي طريقة أساسية وبسيطة لحد ما، لكنها مفيدة لاكتساب الفهم الأساسي لأداء محركات الطائرات. يستخدم معظم مصنعي المحركات طريقة أكثر واقعية، تعرف بالحرارة النوعية الفعلية. عند المستويات المرتفعة من السرعات الفوق صوتية، سوف تحتاجالضغوطودرجات الحرارة المرتفعة إلى حسابات غير مألوفة مثل الكيمياء المجمدة وكيمياء الاتزان.
تفترض الحسابات السابقة أن كمية الوقود المتدفقة لغرفة الاحتراق تعوض كمية الهواء المستنزفة من عند الضاغط، لتبريد التربينة. هذه الفرضية غير دقيقة، نظرا لأن الهواء المستنزف يُفرض أنه تم التخلص منه مباشرة (بمروره فوق فوهة الدفع) و لايكون قادرا على المساهمة في قوة دفعالمحرك.
في نموذج أداء أكثر تطورا، يمكن اهمال هواء التبريد للصف الأول من ريش التوجيه للتربينه (تقع بعد غرفة الاحتراق مباشرة) بشكل آمن، نظرا لعدم وجود تأثير له على درجة حرارة الدخول للتربينة أو على قوة الدفع الناتجة. و مع ذلك، فإنه يجب تضمين هواء تبريد التربينة في هذا النموذج.
يتم استخراج هواء التبريد من الضاغط، ثم يمر في ممرات ضيقة قبل أن يتم حقنه في قاعدة الريش الدوارة للتربينة. و يمرالهواء المستنزف بالعديد من الممرات المعقدة داخل الريشة لاستخراج الحرارة منها، قبل أن يتم إلقائه في سريان الغاز المجاور لسطح ريشة التربينة.
في نموذج أداء متطور، يتم فرض أن هواء التبريد يخمد سريان الغاز الخارج من التربينة بتقليل درجة حرارته، لكنه أيضا يزيد تدفق كتلته.
يتم معاملة هواء تبريد أقراص التربينة بنفس الطريقة التي يعامل بها هواء تبريد الريش. حيث يُفرض أيضا أن هواء تبريد أقراص التربينة لا يشارك في دورةالمحرك حتى يمر من خلال صف واحد من الريش (أي أن كتلة هواء التبريد لا يتم أخذها في الحسابات إلا بعد مرورها من صف واحد من ريش التربينة).
و بطبيعة الحال، تُخصم أي كمية هواء يتم استنزافها من كمية الهواء الكلية عند نقطة الاستنزاف في الضاغط. كما أنه يجب تعديل حساب القدرة التي يستهلكها الضاغط عند استنزاف بعض الهواء من بين مراحل الضاغط (كتلة الهواء في الضاغط هتقل فالبتالي هتقل القدرة المستهلكة).
تحسينات الدورة
يؤدي زيادة نسبة الضغط الكليللضاغط إلى زيادة درجة حرارة الدخول لغرفة الاحتراق. لذلك، عند تدفق ثابت للوقودوالهواء، تزداد درجة حرارة الدخول للتربينة أيضا. و برغم أن ارتفاع درجة الحرارة خلال الضاغط يؤدي إلى انخفاض كبير في درجات الحرارة خلال التربينة (الانخفاض في الفرق بين درجة حرارة الدخول و الخروج، أي استهلاك الضاغط لقدرة أكبر، و ليس انخفاض لدرجة حرارة الخروج من التربينة لأنها ثابتة، بينما الارتفاع يحدث في درجة حرارة الدخول)، إلا أن درجة حرارة الفوهة لا تتأثر لأنه يتم اضافة نفس كمية الحرارة للنظام الكلي. و مع ذلك، يكون هناك ارتفاع في نسبة الضغط في الفوهة، لأن نسبة التمدد في التربينة تزيد بقليل عن نسبة الضغط الكلي، و بالتالي يزداد الدفع الصافي و يؤدي لانخفاض الاستهلاك النوعي للوقود (تدفق الوقود/الدفع الصافي).
و مع ذلك، يتطلب الأمر أيضا مواد أفضل تصنع منها التربينة، و تبريد أفضل للريش حتى تتحمل الزيادة في كل من درجة حرارة الدخول للتربينة و درجة حرارة الغاز الخارج من الضاغط. كما تتطلب زيادة درجة حرارة الخروج من الضاغط، استخدام مواد أفضل لصناعة الضاغط. قد تؤدي أيضا زيادة درجة حرارة الاحتراق إلى زيادة انبعاثات أكاسيد النيتروجين، التي ترتبط بحدوث الأمطار الحامضية بعد ذلك.
عندما تضاف مرحلة أخيرة للضاغط لزيادة نسبة الضغط الكلي، لا يتطلب ذلك زيادة سرعة العمود الدوار، لكنه يؤدي لخفض حجم المحرك، و يتطلب تغيير التربينة لأخرى تتناسب مع الانخفاض في كمية الغاز المتدفق، الأمر الذي يكون مكلفا.
على النقيض، عند إضافة مرحلة صفرية للضاغط (تضاف في مقدمة الضاغط) لزيادة نسبة الضغط الكلي، سيتطلب ذلك زيادة في سرعة العمود الدوار (لتحقيق نفس رقم ماخ عند قمة الريش في المراحل الأساسية للضاغط، لأن درجة حرارة الخروج من هذه المراحل تكون أكبر من المرحلة الأولى، و عندما ترتفع درجة الحرارة تزداد سرعة الصوت فيقل رقم ماخ، لذلك يجب زيادة سرعة المائع المتدفق بزيادة سرعة الدوران للمحافظة على ثبات قيمة رقم ماخ). و تؤدي الزيادة في سرعة دوران العمود الدوار إلى زيادة الاجهادات الناتجة عن قوى الطرد المركزي على كل من ريش و قرص التربينة. و مع زيادة درجة حرارة الغاز الساخن و هواء التبريد القادم من الضاغط، يؤدي كل ذلك إلى قصر العمر الافتراضي للتربينة، أو تطوير المواد المصنوعه منها لكي تتحمل درجات الحرارة. يؤدي أيضا إضافة مرحلة صفرية للضاغط، إلى زيادة كمية الهواء المتدفق للمحرك، مما يؤدي لزيادة الدفع الصافي.
تحتوي حسابات نقطة التصميمللمحرك النفاث التوربيني ثنائي العمود الدوار، على شقين لحسابات الانضغاط، أحدهما يختص بمراحل الضغط المنخفض في الضاغط ، و الآخر يتعامل مع مراحل الضاغط ذات الضغط المرتفع. و بالمثل في حسابات التربينة يوجد شقين، أحدهما لمراحل الضغط المنخفض من التربينة و الآخر لمراحل الضغط المرتفع.
يقال أن المحرك يعمل خارج نقطة التصميم لو حدث التالي:
1)تغيير اعداد الخنق.
2)تغيير الارتفاع
3)تغيير سرعة الطيران.
4)تغير الظروف الجوية.
5)تغير حالات التشغيل للمحرك (كزيادة ضغط الدخول).
6)تغير شكل المحرك.
ومع ذلك، فإن كل نقطة خارج التصميم تنطبق عليها حسابات نقطة التصميم، و تكون الدورة الناتجة (غالبا) لها نفس أبعاد التربينةوالفوهة مثل التي في نقطة التصميم. و بكل وضوح، لا يمكن أن يزداد أو ينخفض تدفق المائع عن الحد المسموح به في الفوهة النهائية، و تنطبق هذه القاعدة أيضا على ريش التوجيه للتربينة، التي تتصرف كانها فوهات صغيرة.
حساب مبسط لنقطة خارج التصميم
تتم حسابات نقطة التصميم عادة باستخدام برنامج حاسوبي. و يمكن أن يُستخدم نفس البرنامج لخلق نموذج مبسط لنقطة خارج التصميم، عن طريق إضافة دورة حساب تكرارية.
في الحسابات التكرارية، يتم إجراء الحساب بأخذ قيم تخمينية للمتغيرات. و في نهاية الحساب، يتم تحليل قيم شروط المعادلة، ثم يتكرر الحساب لتحسين القيم و تقليل الخطأ. و يتم تكرار الحساب باستخدام القيم الجديدة للمتغيرات التي تم الحصول عليها، و يستمر التكرار حتى تقل نسبة الخطأ إلى القيمة المسموح بها (1% على سبيل المثال). (تسمى هذه الطريقة رياضيا بأسلوب المحاولة و الخطأ، أي أنك تقوم بفرض قيم للمتغيرات ثم في نهاية الحسابات تستخدم القيم الجديدة و تكرر الحساب مرة أخرى حتى تصل للدقة المطلوبة).
متغيرات العملية التكرارية
الثلاثة متغيرات التالية هي المتغيرات اللازمة لاجراء عملية حساب تكرارية لمحرك نفاث توربيني أحادي العمود الدوار، و تعتبر مفتاح متغيرات التصميم:
1)دالة لتدفق الوقود في غرفة الاحتراق، و على سبيل المثال قد تكون مرتبطة بدرجة حرارة الدخول للتربينة.
يجب تحقيق آخر شرطين لأنهما شروط فيزيائية، بينما الشرط الأول هو مجرد قياس للخنق.
ملاحظة: التدفق الصحيح هو التدفق الذي كان سيمر في جهاز ما، لو تساوى ضغط الدخول و درجة الحرارة مع الظروف المحيطة عند مستوى سطح البحر، في يوم قياسي.
النتائج
الرسم البياني السابق هو نتاج للعديد من الحسابات لنقاط خارج التصميم، ليوضح تأثير حيود المحرك النفاث عن نقطة التصميم. و يعرف الخط الموضح بالرسم أنه خط تشغيل الضاغط عند الحالة المستقرة. في معظم مدى الخنق، تعمل التربينة في المحرك النفاث بين مستويات حدوث الاختناق. حيث يختنق كل حلق للتربينة بالاضافة للفوهة النهائية. و بالتالي تبقى نسبة الضغط للتربينة ثابتة قيمة ثابتة للنسبة بين فرق درجات الحرارة خلال التربينة و درجة حرارة الدخول للتربينة. و حيث أن درجة حرارة الدخول للتربينة تنخفض مع الخنق عادة، لذلك يجب أن يقل فرق درجات الحرارة خلال التربينة. و مع ذلك، فإن التغير في درجات الحرارة خلال الضاغط، يتناسب مع التغير في درجات الحرارة خلال التربينة. و بالتالي فإن النسبة بين فرق درجات الحرارة خلال الضاغط، و درجة حرارة الدخول للضاغط، يجب أن تقل أيضا، مسببه بذلك انخفاض نسبة الضغط خلال الضاغط. يجب أن يكون هناك انخفاض في التدفق الصحيح الداخل للضاغط، بانخفاض نسبة الضغط. لذلك، يكون لخط عمل الضاغط عند الحالة المستقرة، ميل موجب، كما هو موضح بالرسم البياني السابق.
النسبة بين درجة حرارة الدخول للتربينة و درجة حرارة الدخول للضاغط ( ) هي الكمية التي تحدد مقدار الخنق للمحرك. لذلك، على سبيل المثال، عند زيادة درجة الحرارة الكلية عند الدخول للمحرك عن طريق زيادة سرعة الطيران، و ذلك عند ثبات درجة حرارة الدخول للتربينة، سيؤدي ذلك لحدوث خنق في المحرك حتى يصل لتدفق أقل أو نسبة ضغط أقل.
بكل وضوح، يفقد المحرك جزء من الدفع الصافي له، عندما يحدث له خنق. و هذا الفقد في الدفع يرجع إلى الانخفاض في تدفق كتلة الهواء، بالاضافة لانخفاض درجة حرارة الدخول للتربينة، و كذلك أداء أجزاء المحرك.
الحساب المبسط لنقطة خارج التصميم، كما تم توضيحه في السابق، غير صحيح بعض الشئ، حيث أنه يفترض الآتي:
2) لا يحدث تغيير في الضغط المفقود عند تغير كمية التدفق الداخلة لجزء ما من المحرك.
3) لا يوجد تغير في كمية التدفق للتربينة أو في معامل التفريغ للفوهة عند تغير الخنق.
وعلاوة على ذلك ، ليس هناك ما يشير عن السرعة النسبية للعمود الدوار، أو حد حدوث الضغط الخلفي للضاغط.
حساب معقد لنقطة خارج التصميم
يمكن خلق نموذج أكثر دقة لنقطة خارج التصميم، عن طريق استخدام خرائط الضاغط[لغات أخرى] و خرائط التربينة[لغات أخرى]، للتتنبأ بتدفق الكتلة الصحيح للنقطة الخارجة عن التصميم، بالاضافة إلى نسب الضغط و الكفاءات و السرعات النسبية للعمود الدوار...إلخ. و يمكن تحقيق مزيد من القدرة، بالسماح للضغط المفقود في جزء ما من المحرك عند نقطة الخروج عن التصميم، بأن يتغير مع تدفق الكتلة الصحيح، أو رقم ماخ...إلخ.
و تتشابه هذه العملية التكرارية مع العملية التكرارية البسيطة لنقطة خارج التصميم.
أثناء الحساب المعقد لنقطة خارج التصميم، يتم تخمين نقطة تشغيل الضاغط على خريطة الضاغط ( بدلالة و ) للحصول على قيمة تقريبية لتدفق الكتلة في الضاغط و نسبة الضغط و الكفاءة. بعد انتهاء حسابات الاحتراق، تُستخدم سرعة العمود الدوار الناتجة في تقدير السرعة الصحيحة للتربينة (و يرمز لها ). عادة ما تستخدم القدرة المطلوبة من التربينة و كمية التدفق عند الدخول و كذلك درجة الحرارة، لتقدير النسبة بين مقدار التغير في المحتوى الحراري للغاز في التربينة و درجة حرارة الدخول (أي ). بعد ذلك، تُستخدم المعاملات التقريبية لسرعة التربينة و النسبة بين التغير في المحتوى الحراريودرجة حرارة الدخول للتربينة، للدخول لخريطة التربينة و حساب التدفق الصحيح في التربينة ()
والكفاءة (أي ). يستمر بعد ذلك الحساب بنفس الطريقة المعتاده في الفوهة و الأنبوب النفاث. إن لم تكن شروط العملية التكرارية ضمن الدقة المطلوبة، يتم تخمين قيم جديدة للمتغيرات و بدأ العملية من جديد.
الرسم البياني على خريطة LHs هو نتاج لحسابات عديدة خارج التصميم، ليظهر تأثير حيود المحرك النفاث عن حالة نقطة التصميم له. و يشبه خط العمل لخط العمل الموضح في الرسم السابق لكنه مرسوم على خريطة الضاغط الآن و يدل على سرعة العمود الدوار الصحيحة وعند حدوث الضغط الخلفي للضاغط.
نموذج أداء
مهما كان تطور برنامج حساب نقطة خارج التصميم، فأنه لايستخدم فقط للتنبأ بأداء المحرك عند نقطة خارج التصميم، لكنه يساهم أيضا في عملية التصميم (بتقدير السرعات القصوى للعمود الدوار، الضغوط، درجات الحرارة..إلخ. حتى يدعم أجزاء المحرك). قد تصمم بعض النماذج الأخرى لمحاكاة التصرف الفردي لمكونات المحرك.
أثار التركيب
في أكثر الأحيان, يكون حساب نقطة التصميملمحرك غير مركب في طائرة. تظهر أثار التركيب غالبا عند الحالات الخارجة عن نقطة التصميم، و تعتمد على التطبيق المستخدم فيه المحرك.
أ) يعوض ضغط الدخول للمحرك (تعويض في الضغط نتيجة الفقد الذي حدث) بنسبة أقل من 100%.
ب) يُستنزف الهواء من نظام الانضغاط من أجل تكييف مقصورة القيادة و تبريد الأجهزة الإلكترونية المتعلقة بالطيران.
ج) تستمد مضخة الزيت و الوقود القدرة المطلوبة من عمود الدوران للضغط المرتفع.
بالاضافة لذلك، في المحرك المثبت بالكامل في الطائرة، تؤدي مفاقيد احتكاك السحب (احتكاك سريان المائع بالأجزاء) للحد من فعالية الدفع الصافي للمحرك.
1) تسبب كمية الهواء المتسرب من مدخل الهواء، بحدوث احتكاك سحب.
2) يمكن لغازات العادم الساخنة الخارجة من الفوهة الساخنة، أن تتسبب بتأكل السطح الخارجي لسدادة الفوهة و تحدث احتكاك سحب.
3) إذا كان المحرك النفاث من النوع التوربيني المروحي المستخدم في الأغراض المدنية، يمكن لنسبة الالتفافية أن تحتك مع الغطاء الخارجي للمولد الغازي، و الجزء البارز منه الذي يثبته في الهيكل، محدثة احتكاك سحب.
يعطي الدفع الصافي لأنبوب التدفق، بخصم قوى احتكاك السحب من الدفع الصافي المحسوب سابقا.
يوجد تأثير آخر لتركيب المحرك:
يحتك التدفق الحر للهواء مع الغطاء الخارجي للمروحة و الجزء الذي يثبتها بالجناح، محدثا بذلك احتكاك سحب. بخصم قيمة هذا الاحتكاك من الدفع الصافي لأنبوب التدفق، تنتج القوة التي يؤثر بها المحرك على هيكل الطائرة.
في الاستخدامات العسكرية، يكون المحرك بداخل هيكل الطائرة، لذلك ينطبق عليه البعض فقط من الأثار السابق ذكرها.
يُمكن تطوير نموذج مؤقت، بعمل تعديلات بسيطة في حساب نقطة خارج التصميم. يتم فرض أن التسارع المؤقت (أو التباطئ) يحدث في عدد كبير من الفترات الزمنية القصيرة، على سبيل المثال، 0.01 ثانية. وأثناء كل فترة زمنية، يتم فرض ثبوت سرعة العمود الدوار لحظيا. لذلك، في الحساب المعدل لنقطة خارج التصميم، تكون سرعة العمود ثابتة، ويحل بدلا منها متغير جديد يُسمى القدرة الفائضة للتربينة . بعد إجراء العمملية الحسابية التكرارية، تُستخدم قيمة القدرة الفائضة للتربينة، لتقدير التغير الحادث في سرعة العمود الدوار.
يستخدم هذا التغير في سرعة العمود الدوار لحساب السرعة الجديدة للعمود الدوار (ثابتة لحظيا أيضا) في الفترة الزمنية التالية:
= +
وتكرر نفس الخطوات في الفترة الزمنية الجديد، حيث:
= +
تكون نقطة بداية النموذج المؤقت ذات حالة مستقرة (مثال: عند مستوى سطح البحر). و يتم إدخال ميل تدفق الوقود على الزمن، على سبيل المثال، إلى النموذج المؤقت لمحاكاة التسارع العنيف (التسارع العنيف أو المفاجئ، يحدث عند تحريك رافعة التحكم في القدرة بسرعة، مما يؤدي لخطورة تكون لهب غني بالوقود، إن تم حقن المحرك بالوقود قبل أن يسحب الضاغط كمية الهواء المناسبة، لتحقيق نسبة الهواء إلى الوقود المناسبة للتشغيل) بالوقود للمحرك (أو التباطئ). في البداية، يتم إجراء حساب النموذج المؤقت عند زمن صفر، مع تدفق مستقر للوقود إلى المحرك، الذي يجب أن يعطي القدرة الفائضة من التربينة، مساوية للصفر. وطبقا للتعريف، يجب أن يعطي أول حساب للنموذج المؤقت، نقطة بداية الحالة المستقر. ثم يتم حساب تدفق الوقود للزمن الجديد من ميل تدفق الوقود، ويستخدم لمراجعة مطابقة المحرك لذلك في حساب العملية التكرارية التالية للنموذج المؤقت. ويتم تكرار هذه العملية حتى تكتمل المحاكاة المؤقتة.
يجب الملاحظة أن النموذج المؤقت المذكور سابقاً هو نموذج مبدئي لحد ما، حيث أنه يأخذ بعين الاعتبار تأثيرات عزم القصور الذاتي، بينما يهمل تأثيرات أخرى. على سبيل المثال، طبقا للشروط المؤقتة، ليس بالضرورة أن يتساوى تدفق الكتلة الداخل إلى حجم ما (الأنبوب النفاث مثلا) مع تدفق الكتلة الخارج منه، مما يعني أن هذا الحجم قد يتصرف كمجمع أو مخزن أو مفرغ للغاز. بالمثل، يمكن لجزء من هيكل المحرك (جدار الفوهة مثلا)، أن يستخرج أو يضيف الحرارة إلى تدفق الغاز، مما سيؤثر على درجة حرارة التدفق الخارج من هذا الجزء.
أثناء التسارع العنيف لمحرك نفاث توربيني أحادي عمود الدوران، يحيد خط عمل الضاغط عن خط عمل الحالة المستقرة، ويتخذ مسارا منحنيا نحو نقطة التعطل (نقطة حدوث الضغط الخلفي)، لكنه يعود ببطئ إلى خط الحالة المستقرة، عندما تصل قيمة تدفق الوقود إلى قيمة أكبر ضمن الحالة المستقرة. أثناء بداية التدفق الزائد للوقود، يمنع القصور الذاتي للعمود الدوار من أن يتسارع بشكل مفاجئ. وبطبيعة الحال، فإن التدفق الزائد للوقود يرف درجة حرارة الدخول للتربينة. حيث أن التربينة تعمل بين مستويين للاختناق ( حلق التربينة وحلق الفوهة)، تظل نسبة الضغط للتربينة، ونسبة الانخفاض في درجة الحرارة/درجة حرارة الدخول للتربينة ثابتة تقريبا. وعندما تزيد درجة حرارة الدخول للتريبنة، يجب أيضا أن يزيد كل من فرق درجات الحرارة خلال التربينة، والقدرة الناتجة من التربينة. وتؤدي هذه القدرة الزائدة للتربينة إلىزيادة ارتفاع درجات الحرارة خلال الضاغط مما يزيد نسبة الضغط في الضاغط أيضا. عندما تتغير السرعة المصححه للضاغط، تميل نقطة التشغيل للتحرك صعودا على طول خط ثبات السرعة المصححه. وبمرور الوقت، يبدأ عمود الدوران بالتسارع وينتهي التأثير المذكور سابقا.
أثناء التباطؤ العنيف، يحدث العكس، حيث يتحرك خط العمل المؤقت للضاغط أسفل خط الحالة المستقرة.
على مدى السنين، تم تطوير العديد من البرمجيات لتقدير أداء الأنواع المختلفة من محرك التربينة الغازية عند ظروف العمل عند نقطة التصميم و خارج التصميم و النقط المؤقتة. معظم هذه البرمجيات تستخدم فقط بواسطة المصنعين المختلفين لمحركات الطائرات، لكن أيضا يوجد العديد من البرمجيات المتاحه للعامه، منها على سبيل المثال
عند خنق المحرك، يحدث تغيير في الاستهلاك النوعي للوقود بالنسبة للدفع الصافي، وذلك بسبب التغيرات في دورة المحرك (على سبيل المثال: انخفاض نسبة الضغط الكلي) و التغيرات في أداء أجزاء المحرك.
و عندما يُرسم ذلك بيانيا، يعرف المنحنى الناتج بحلقة الدفع/الاستهلاك النوعي للوقود. يمكن صنع مجموعة من هذه المنحنيات عند ظروف مستوى سطح البحر أو ظروف يوم مثالي، عند مدى من سرعات الطيران. و يمكن صنع مخطط هاسك باستخدام هذه المجموعة من المنحنيات.قشر مؤامرة (RHS) يمكن تطويرها باستخدام هذه العائلة من المنحنيات. يرمز لمقياس الدفع الصافي ، حيث هي الضغط المحيط النسبي, في حين ان مقياس الاستهلاك النوعي للوقود يرمز له ، حيث هي درجة الحرارة المحيطة النسبية.
يمكن استخدام المخطط الناتج لتقدير الدفع الصافي للمحرك و الاستهلاك النوعي للوقود، عند أي ارتفاع أو سرعة الطيران و المناخ، على مدى مختلف من اعدادت الخنق.
باختيار نقطة على المخطط يتم حساب الدفع الصافي على النحو التالي:
ينخفض الدفع الصافي بشكل واضح مع الارتفاع، بسبب الانخفاض في الضغط المحيط.
يتم حساب الاستهلاك النوعي للوقود المقابل للدفع الصافي المحسوب كالتالي:
عند نقطة معطاه على مخطط هاسك، ينخفض الاستهلاك النوعي للوقود مع انخفاض درجة الحرارة المحيطة (مثال: تنخفض الحرارة بسبب زيادة الارتفاع أو مناخ أكثر بروده). يرجع السبب الأساسي لزيادة الاستهلاك النوعي للوقود مع سرعة الطيران إلى الزيادة الضمنية في احتكاك السحب في ناشر الدخول للمحرك.
برغم أن مخطط هاسك، طريقة موجزة لوصف أداء المحرك النفاث، إلا أن التوقعات الناتجة عند ارتفاع ما، تكون متفائلة قليلا. على سبيل المثال, لأن درجة الحرارة المحيطة تظل ثابتة فوق ارتفاع 11000 متر، إذن عند نقطة لا بُعدية لن يظهر مخطط هاسك أي تغيير في الاستهلاك النوعي للوقود مع زيادة الارتفاع. في الواقع، سيكون هناك زيادة طفيفة مستقرة في الاستهلاك النوعي للوقود، بسبب انخفاض رقم رينولدز.
الانخفاض المؤقت للدفع
يرتبط الدفع الصافي الاسمي للمحرك النفاث عادة بمستوى سطح البحر الثابت، سواء للمقياس الجو الدولي أو في حالة يوم حر (مثال: المقياس الجوي الدولي+10 درجة سليزيوس). على سبيل المثال، محرك جي إي90-76بي لديه عند الاقلاع دفع ثابت يلغ 76000 باوند قوة (360 كيلو نيوتن) عند مستوى سطح البحر الثابت، مقياس الدولي+15درجة سيليزيوس.
بطبيعة الحال،ينخفض الدفع الصافي مع الارتفاع بسبب انخفاض كثافة الهواء، و بسبب تأثير سرعة الطيران أيضا.
في البداية عندما تكتسب الطائرة سرعة أسفل مدرج الاقلاع، يرتفع كل من الضغطودرجة الحرارة ارتفاع قليل في الفوهة، بسبب أن الزيادة في احتكاك السحب في الرام (الرام: هو ناشر يزود الضغط قبل مدخل المحرك) عند مدخل المحرك تكون قليلة. كما سيكون أضا هناك زيادة قليلة في تدفق كتلة الهواء. و بالتالي، في البداية فقط يزداد الدفع الصافي للفوهة مع سرعة الطيران. لكن مع ذلك، بسبب أن المحركمحرك متنفس للهواء (أي محرك يسحب الهواء كمؤكسد، على عكس المحركات الصاروخية)، يكون هناك مفاقيد لسحب الهواء من الجو. و تعرف هذه المفاقيد باحتكاك السحب للرام. و برغم أن هذه المفاقيد تساوي صفر عند الظروف الثابتة، إلا أنها تزداد سريعا مع سرعة الطيران، مسببة بذلك انخفاض الدفع الصافي للطائرة.
حينما ترتفع سرعة الطيران بعد الاقلاع، يبدأ ارتفاع الاحتكاك في الرام عند مدخل المحرك، بالتأثير على ضغط أو درجة حرارةالفوهة و تدفق الهواء لمدخل المحرك، مسببا زيادة الدفع الكلي للفوهة بشكل سريع. و يبدأ ذلك الآن، بخفض تأثير احتكاك السحب المتزايد للرام، و يؤدي في النهاية لزيادة الدفع الصافي.
في بعض المحركات، يكون الدفع الصافي عند رقم ماخ 1 على سبيل المثال، عند مستوى سطح البحر، أكبر قليلا من الدفع الساكن. لكن مع زيادة رقم ماخ عن 1، ومع تصميم مدخل المحرك لسرعة أقل من سرعة الصوت، تبدأ المفاقيد الناتجة عن الموجة الصادمة (يحدث فقد في الضغط) بخفض الدفع الصافي، لكن مع استخدام تصميم فوق سرعة الصوت لمدخل المحرك، يمكن حدوث انخفاض أقل في الضغط عند المدخل، مما يسمح باستمرار الدفع الصافي بالزيادة في حالة تخطي سرعة الصوت.
يعتمد الانخفاض المؤقت للدفع الذي تم وصفه سابقا، على القيمة التصميمية للدفع النوعي، و لدرجة ما على كيفية تأثر المحرك بدرجة الحرارة عند المدخل. هناك ثلاثة طرق محتملة لتقييم المحرك، ظهرت بناءا على مخطط هاسك السابق. أول طريقة هي أنه يمكن تقييم المحرك بناءا على درجة حرارة الدخول للتربينة، و تظهر ذلك على مخطط هاسك بالرمز . الطريقة الثانية هي أنه يمكن فرض سرعة ميكانيكية ثابتة لعمود الدوران و يرمز لها على مخطط هاسك . أما الطريقة الأخيرة فهي استخدام سرعة مصححة ثابتة للضاغط، و تظهر على مخطط هاسك كالتالي . إن تغير الدفع الصافي مع رقم ماخ للطيران، يمكن رؤيته بوضوح على مخطط هاسك.
اتجاهات أخرى
يمكن أن يُستخدم مخطط هاسك ليشير إلى اتجاهات أو دلالات معينه في العوامل التالية:
عندما تنخفض درجة الحرارة المحيطة (بسبب الارتفاع أو برودة المناخ)، يجب أن تنخفض درجة حرارة الدخول للتربينة أيضا، حتى تبقى على نفس النقطة اللابُعدية على مخطط هاسك. و ستبقى أيضا كل المجموعات اللابعدية ثابتة (مثل: التدفق المصحح، أرقام ماخ المحورية و المحيطية، نسب الضغط، الكفاءات...إلح).
مرة أخرى، عندما تنخفض درجة الحرارة المحيطة (بسبب زيادة الارتفاع أو برودة المناخ)، يجب أن تنخفض السرعة الدورانية للعمود الدوار أيضا، حتى تبقى على نفس النقطة اللا بُعدية على مخطط هاسك.
من خلال تعريف السرعة المصححة للضاغط، و التي يرمز لها، يجب أن تظل هذه السرعة ثابتة أيصا عند نقطة لا بُعدية معطاه على مخطط هاسك.
تصنيف الأداء
المدني
في الوقت الحاضر، تصنف المحركات النفاثة المدنية بخطوط تصاعدية مستوية على الدفع الصافي وصولا إلى "نقطة الانعطاف" (ظروف جوية معينة يبدأ الدفع الصافي بالثبات عندها). لذلك عند ظروف جوية معلومه، يظل الدفع الصافي ثابت تقريبا على مدى كبير من درجة الحرارة المحيطة، بزيادة درجة حرارة الدخول لتربينة الضغط المرتفع. و مع ذلك، تبقى درجة حرارة الدخول للتربينة ثابتة بعد نقطة الانعطاف، و يبدأ الدفع الصافي بالانخفاض مع زيادة درجة الحرارة المحيطة.[8] و بالتالي يجب تخفيض حمل الطائرة من الحمولة أو الوقود المخزن.
عادة، تبقى درجة حرارة الدخول للتربينة عند نقطة الانعطاف ثابتة، بغض النظر عن الارتفاع أو سرعة العبور.
بعض المحركات لديها تقييم خاص يعرف باسم " ضربة دنفر". و يتطلب هذا درجة حرارة دخول للتربينة أكبر من المعتاد، من أجل إقلاع طائرة محملة بالكامل من مطار دنفر في شهور الصيف. مطار دنفر حار في الصيف، و تبعد المدرجات أكثر من ميل فوق مستوى سطح البحر. كل من هذه العوامل يؤثر على الدفع الناتج من المحرك
العسكري
تختلف أنظمة التصنيف المستخدمة في المحركات العسكرية من محرك لمحرك. يظهر على اليسار في الصورة شكل نموذجي للتصنيف العسكري. في مثل هذا التصنيف، يتم مضاعفة الدفع الناتج من دورة المحرك المختار، بينما يتم الحفاظ على الحدود الديناميكية الهوائية و الميكانيكية المفروض على الألات التوربينية. إذا كان هناك دفع كافي لتحقيق مهمة الطائرة في مدى معين من درجات حرارة الدخول، و قد يلجأ مصمم المحرك لتقصير نظام عمل المحرك، لتخفيض درجة حرارة الدخول للتربينة، للحفاظ على عمر المحرك.
عند درجات حرارة الدخول المنخفضة، يميل المحرك للعمل عند الحد الأقصى للسرعة المصححة أو التدفق المصحح. عندما ترتفع درجة حرارة الدخول، يظهر تأثير القيود المفروضة على درجة حرارة الدخول لتربينةالضغط المرتفع، بانخفاض التدفق المصحح تدريجيا. و عند درجات حرارة الدخول الأكثر ارتفاعا، يظهر تأثير الوصول للحدود المسموحة لدرجة حرارة الخروج من الضاغط (T3) بانخفاض درجة حرارة الدخول للتربينة و التدفق المصحح.
يظهر تأثير درجة حرارة الدخول التصميمية على الجانب الأيسر المقابل موضحا في الرسم البياني.
يقوم محرك مصمم بدرجة حرارة دخول T1 منخفضة مع تدفق مصحح مرتفع و درجة حرارة دخول مرتفعة للتربينة، بزيادة الدفع الصافي عند ظروف درجة الحرارة الدخول المنخفضة T1 (مثال: 0.9 ماخ، 30000 قدم). و مع ذلك، برغم أن درجة حرارة الدخول للتربينة تبقى ثابتة عندما ترتفع T1، يكون هناك انخفاض ثابت في التدفق المصحح، ينتج عنه دفع صافي قليل عند ظروف درجة حرارة الدخول T1 المرتفعة (مثال: 0.9 ماخ عند مستوى سطح البحر).
برغم أن المحرك المصمم على درجة حرارة دخول T1 مرتفعة، يكون له تدفق مصحح مرتفع عند الظروف المنخفضة لدرجة حرارة الدخول T1، إلا أن درجة حرارة الدخول للتربينة تكون منخفضة مما يؤدي إلى دفع صافي قليل جدا. عند ظروف T1 المرتفعة فقط، يحدث الجمع بين تدفق مصحح مرتفع و درجة حرارة دخول للتربينة مرتفعة، مما يعطي خصائص دفع جيدة.
و يعتبر التصميم على درجة حرارة دخول متوسطة (290 كلفن مثلا)، حلال وسطا بين الحالتين السابقتين.
عند ازدياد درجة حرارة الدخول للمحرك T1 على طول قمة الخط المعبر عن درجة حرارة الدخول للتربينة (كما هو موضح في رسم تأثير درجة حرارة الدخول التصميمية)، سيحدث اختناق للمحركات يؤدي إلى انخفاض في التدفق المصحح و نسبة الضغط الكلي. و كما هو موضح في الخريطة، حيث يظهر حد مشترك من درجة حرارة الدخول للتربينة T3 لكل من دورات درجة حرارة الدخول للمحرك T1 التصميمية المنخفضة و المرتفعة .و بشكل عام، سيرتبط حد T3 مع نسبة ضغط مشتركة عند نقطة انكسار خط T3. و برغم أن الخنق سيزداد في كلا الدورتين عند انخفاض T1، إلا أن الدورة ذات درجة الحرارة T1 المنخفضة تستغرق زمن أكبر للتسارع قبل الوصول للسرعة المصححة. و بالتالي، تكون نسبة الضغط التصميمية أكبر في حالة الدورة ذات درجة حرارة الدخول T1 المنخفضة.[9]
Artikel ini sudah memiliki daftar referensi, bacaan terkait, atau pranala luar, tetapi sumbernya belum jelas karena belum menyertakan kutipan pada kalimat. Mohon tingkatkan kualitas artikel ini dengan memasukkan rujukan yang lebih mendetail bila perlu. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Modem eksternal 28.8kbps serial-port modem dari Motorola. Modem berasal dari singkatan Modulator Demodulator. Modulator merupakan bagian yang mengubah sinyal informasi ke dalam...
Ini adalah nama Batak Toba, marganya adalah Manurung. Martin ManurungS.E., M.A. Anggota Dewan Perwakilan Rakyat Republik IndonesiaPetahanaMulai menjabat 1 Oktober 2019Daerah pemilihanSumatera Utara II Informasi pribadiLahir31 Mei 1978 (umur 45)Jakarta, IndonesiaKebangsaanIndonesiaPartai politikNasDemSuami/istriWasty Kurnia Evasari[1]Anak1Tempat tinggalJakarta, IndonesiaPendidikanFakultas Ekonomi Universitas Indonesia (Alumni 2001)School of International Development, Universit...
Country in Central America For the former British Crown Colony, see British Honduras.For other uses, see Belize (disambiguation). Belize Flag Coat of arms Motto: Sub umbra floreo (Latin)Under the shade I flourishAnthem: Land of the Free Royal anthem: God Save the King Location of Belize (dark green) in the Americas Belize and its neighbors: *Guatemala (*Petén Department *Izabal Department) *Mexico (*Quintana Roo *Campeche)CapitalBelmopan17°15′N 88°46′W / ...
2020 U.S. stage legislative elections For related races, see 2020 United States elections. 2020 United States state legislative elections ← 2019 November 3, 2020 2021 → 86 legislative chambers44 states Party Republican Democratic Coalition Chambers before 59 39 1[a] Chambers after 61 37 1[a] Overall change 2 2 Map of upper house elections: Democrats retained control Republicans gained contro...
У этого термина существуют и другие значения, см. Красная книга (значения). Красная книга Российской Федерации (ККРФ) — основной государственный документ, учреждённый в целях выявления редких и находящихся под угрозой исчезновения диких животных, дикорастущих растен�...
PunuguluPunugulu kept in a shop in West Godavari for salePlace of originSouth IndiaRegion or stateAndhra Pradesh, Telangana HyderabadServing temperatureHotMain ingredientsrice batter Media: Punugulu Punugulu(పునుగులు) or Punukkulu is a snack and common street food[1][2] in Vijayawada, Guntur and a few coastal districts of Andhra Pradesh. Punugulu is a deep-fried snack made with rice, urad dal and other spices.[3] They are often served with pe...
Konsulat Republik Indonesia di VanimoLokasi Vanimo, Papua NuginiYurisdiksiBarat dan SandaunKonsulAllen SimarmataSitus webkemlu.go.id/vanimo/id Konsulat Republik Indonesia di Vanimo (KRI Vanimo) adalah perwakilan konsuler Indonesia di Vanimo, Papua Nugini. Perwakilan ini dibuka berdasarkan Keputusan Presiden No. 54 Tahun 1990. Wilayah kerja KRI Vanimo mencakup dua provinsi yaitu Provinsi Barat dan Provinsi Sandaun. Daftar konsul Berikut adalah daftar diplomat Indonesia yang pernah menjabat seb...
People's tribunal formed in 1966 by Bertrand Russell International War Crimes Tribunal redirects here. Not to be confused with International Criminal Court. Nine-year-old Do Van Ngoc exhibits injuries from napalm in Vietnam. The Russell Tribunal, also known as the International War Crimes Tribunal, Russell–Sartre Tribunal, or Stockholm Tribunal, was a private People's Tribunal organised in 1966 by Bertrand Russell, British philosopher and Nobel Prize winner, and hosted by French philosopher...
Albert Louis Emmanuel de Fouler de Relingue Le général Albert Louis Emmanuel de Fouler. Naissance 9 février 1770[1]Lillers, Pas-de-Calais Décès 13 juin 1831 (à 61 ans)Ancien 2e arrondissement de Paris Origine Française Arme Cavalerie Grade Général de division Années de service 1786 – 1815 Conflits Guerres de la Révolution françaiseGuerres napoléoniennes Distinctions Comte de l'EmpireChevalier de Saint-LouisGrand officier de la Légion d'honneur Hommages Nom gravé sous l'...
Rhododendron schlippenbachii Klasifikasi ilmiah Kerajaan: Plantae (tanpa takson): Tracheophyta (tanpa takson): Angiospermae (tanpa takson): Eudikotil (tanpa takson): Asterid Ordo: Ericales Famili: Ericaceae Genus: Rhododendron Spesies: Rhododendron schlippenbachii Nama binomial Rhododendron schlippenbachiiMaxim. Rhododendron schlippenbachii adalah spesies tumbuhan yang tergolong ke dalam famili Ericaceae. Spesies ini juga merupakan bagian dari ordo Ericales. Spesies Rhododendron schlippenbac...
أخي الدبBrother Bear (بالإنجليزية) الشعارمعلومات عامةالتصنيف فيلم رسوم متحركة الصنف الفني القائمة ... فيلم فنتازيا[1][2] — فيلم رفقاء — فيلم للأطفال — قصة تقدم في العمر — فيلم كوميدي — فيلم دراما — فيلم عائلي — فيلم رسوم متحركة تحريكًا تقليديًّا — حكاية خرافية سينما�...
Disambiguazione – Se stai cercando la permeabilità di un materiale in un campo magnetico, vedi Permeabilità magnetica. Questa voce o sezione sull'argomento geologia non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. In geologia, la permeabilità è una proprietà delle rocce o dei terreni inconsolidati e...
American politician John L. ConeyConey (center) with Ted Alvarez Jr. and R. Earl Dixon, 1972Member of the Georgia House of RepresentativesIn office1971–1972 Personal detailsBorn(1933-08-09)August 9, 1933Muskogee County, Oklahoma, U.S.DiedMay 26, 1992(1992-05-26) (aged 58)Political partyDemocraticAlma materEmory UniversityLamar School of Law John L. Coney (August 9, 1933 – May 26, 1992) was an American politician. He served as a Democratic member of the Georgia House of Representative...
I figli di DuneVeduta di Arrakeen all'inizio della serieTitolo originaleFrank Herbert's Children of Dune PaeseStati Uniti d'America, Germania Anno2003 Formatominiserie TV Generefantascienza Puntate3 Durata266 min Lingua originaleinglese Rapporto1.78:1 CreditiRegiaGreg Yaitanes Soggettobasato sui romanzi Messia di Dune e I Figli di Dune di Frank Herbertstoria di Frank Herbert SceneggiaturaJohn Harrison Interpreti e personaggi Alec Newman: Paul Atreides Barbora Kodetova: Chani Kynes Daniela...
Township in Indiana, United StatesOwen TownshipTownshipCounty Road 600 North at Ellis, once a stop along the now-defunct railroad.Location of Owen Township in Clinton CountyCoordinates: 40°23′25″N 86°30′56″W / 40.39028°N 86.51556°W / 40.39028; -86.51556CountryUnited StatesStateIndianaCountyClintonOrganized1843Named forRobert Dale OwenGovernment • TypeIndiana townshipArea • Total24.98 sq mi (64.7 km2) • Lan...
Chatham House漆咸樓漆咸樓總部成立時間1920類型智庫、非政府组织、國際關係研究機構[*]總部 英国倫敦會員3,000+收入24,444,000 英镑 (2021年) 捐款9,634,000 英镑 (2021年) 員工数193 (2021年) 網站www.chathamhouse.org 漆咸樓(英語:Chatham House),正式名稱為皇家國際事務研究所(英語:The Royal Institute of International Affairs),是一位於倫敦的非營利非政府的智庫組織;其使命為�...
695 هـمعلومات عامةجزء من تقويم هجري تاريخ البدء 9 نوفمبر 1295[1] تاريخ الانتهاء 29 أكتوبر 1296[1] المواليد قائمة مواليد 695 هـ الوفيات قائمة وفيات 695 هـ لديه جزء أو أجزاء القائمة ... محرم 695 هـصفر 695 هـربيع الأول 695 هـربيع الآخر 695 هـجمادى الأولى 695 هـجمادى الآخرة 695 هـرجب 695 هـ�...
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (July 2024) (Learn how and when to remove this message) Orchestra based in Chicago, Illinois Chicago Symphony OrchestraOrchestraFounded1891; 133 years ago (1891)LocationChicago, Illinois, USConcert hallSymphony CenterMusic directorKlaus Mäkelä (Zell Music Director Designate, effective 2027)Web...
Municipality in Minas Gerais, Brazil PlaceCoromandelLocation of CoromandelCoordinates: 18°28′22″S 47°12′00″W / 18.47278°S 47.20000°W / -18.47278; -47.20000Founded7 September 1923Population (2020 [1]) • Total27,966Time zoneUTC−3 (BRT) Coromandel is a Brazilian municipality, located in the southeast region of the country, in the state of Minas Gerais. Its population is estimated at 27,966 people as of 2020. The municipality (mun...