النظرية الطيفية بشكل عام تدور حول تمثيل المؤثرات الخطية أو المصفوفات في شكل قطري.[2] توفر النظرية الطيفية شروطًا يمكن بموجبها تقطير أي مؤثر أو مصفوفة (أي يتم تمثيلهم كمصفوفة قطرية في بعض القواعد). يمكن تقطير المؤثرات العاملة في الفضاءات محدودة الأبعاد بصورة مباشرة، ولكنه يتطلب بعض التعديلات في حالات المؤثرات العاملة في الفضاءات اللانهائية الأبعاد. بشكل عام تحدد النظرية الطيفية فئة المؤثرات الخطية التي يمكن نمذجتها باستخدام مؤثرات الضرب[الإنجليزية]، وهي أبسط المؤثرات التي يمكن التوصل لها.
^معجم مصطلحات الرياضيات، إعداد لجنة مصطلحات الرياضيات في المجمع، أ. د. موفق دعبول، أ. د. خضر الأحمد، أ. د. بشير قابيل، أ. مروان البواب، مجمع اللغة العربية، الجمهورية العربية السورية، 2018، ص 492 (رابط)
^Sunder, V.S. Functional Analysis: Spectral Theory (1997) Birkhäuser Verlag
^ ابمعجم مصطلحات الرياضيات، إعداد لجنة مصطلحات الرياضيات في المجمع، أ. د. موفق دعبول، أ. د. خضر الأحمد، أ. د. بشير قابيل، أ. مروان البواب، مجمع اللغة العربية، الجمهورية العربية السورية، 2018، ص 660 (رابط)
^Hoffman، Kenneth؛ Kunze، Ray (1971)، Linear algebra (ط. 2nd)، Englewood Cliffs, N.J.: Prentice-Hall, Inc.، ص. 312، MR:0276251
للاستزادة
Conway, J. B.: A Course in Functional Analysis, 2nd edition, Springer-Verlag, 1994, (ردمك 0-387-97245-5)