بيز ميديل

بيز ميديل
الموقع كانتون غراوبوندن/كانتون تيسينو، سويسرا
المنطقة غراوبوندن، وتيسينو  تعديل قيمة خاصية (P131) في ويكي بيانات
إحداثيات 46°37′05″N 8°54′40″E / 46.618166666667°N 8.9111111111111°E / 46.618166666667; 8.9111111111111   تعديل قيمة خاصية (P625) في ويكي بيانات
الارتفاع 3,211 متر (10,535 قدم)
السلسلة جبال الألب ليبونتيني
النتوء 952 متر (3,123 قدم)
الوصول الأول 1865
قائمة جبال الألب
خريطة

بيز ميديل (بالإنجليزية: Piz Medel)‏ هو أحد جبال سلسلة جبال الألب ليبونتيني ويقع في كانتون غراوبوندن/كانتون تيسينو في سويسرا. يحتل المرتبة رقم 129 في قائمة جبال سويسرا من حيث الارتفاع، إذ يبلغ ارتفاعه حوالي 3211 متر،[1] بينما يبلغ ارتفاع نتوء الجبل 952 متر، هذا وقد سجل أول وصول لقمة الجبل عام 1865.[2]

انظر أيضًا

مراجع

  1. ^ جميع الارتفاعات الجبلية والنتوءات مأخوذة من الخرائط الطبوغرافية 1:25,000 للمكتب الفيدرالي السويسري للطبوغرافيا. وتم التحقق من النتوءات الجبلية فوق 2500 م وذلك باستخدام بيانات بعثة مكوك رادار الطبوغرافيا والتي تستند على الخطوط الكنتورية في عرض التضاريس خرائط جوجل.
  2. ^ For the Western Alps; دبليو أ. بي. كوليدج, The Alps in nature and history, Methuen & Co, London, 1908.
    For the Central Alps; جوتليب صموئيل ستودر, Über Eis und Schnee: Die höchsten Gipfel der Schweiz und die Geschichte ihrer Besteigung, Volumes 1-3, Schmid & Francke, Bern, 1896-1899.
    For the Eastern Alps: Die Erschließung der Ostalpen, Volumes 1-3, German and Austrian Alpine Club, Berlin, 1894 نسخة محفوظة 06 مايو 2016 على موقع واي باك مشين.

Read other articles:

US-born British poet (1888–1965) For other people named Thomas Eliot, see Thomas Eliot (disambiguation). T. S. EliotOMEliot in 1934 by Lady Ottoline MorrellBornThomas Stearns Eliot(1888-09-26)26 September 1888St. Louis, Missouri, U.S.Died4 January 1965(1965-01-04) (aged 76)London, EnglandOccupationPoetessayistplaywrightpublishercriticCitizenshipUSA (1888–1927)UK (1927–1965)EducationHarvard University (AB, AM)Merton College, OxfordPeriod1905–1965Literary movementModernismNotable w...

 

Pretty GirlsSingel oleh Britney Spears dan Iggy AzaleaDirilis04 Mei 2015 (2015-05-04)DirekamSeptember 2014GenreElektro-hop[1]Durasi2:43LabelRCAPenciptaGeorge AstasioJason PebworthJon ShaveMaegan CottoneIggy AzaleaPerrie EdwardsJesy NelsonLeigh-Anne PinnockJade ThirlwallProduserThe Invisible MenKronologi singel Britney Spears Perfume(2013) Pretty Girls(2015) Tom's Diner(2015) Kronologi singel Iggy Azalea Trouble(2015) Pretty Girls(2015) Team(2016) Video musikPretty Girls...

 

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: A.S. Brindisi. A.S. BrindisiStagione 1938-1939Sport calcio Squadra Brindisi Allenatore Mario De Palma poi Karoly Fogl Presidente Giovanni Roma Serie C4º posto nel girone H. 1937-1938 1939-1940 Si invita a seguire il modello di voce Questa voce raccoglie le infor...

Roald HoffmannRoald HoffmannLahir18 Juli 1937 (umur 86)Zolochiv, Poland (now Ukraine)KebangsaanAmericanWarga negaraUnited StatesAlmamaterStuyvesant High School Columbia UniversityHarvard UniversityDikenal atasreaction mechanismsPenghargaan1981 Hadiah Nobel dalam KimiaKarier ilmiahBidangChemistryInstitusiCornell UniversityPembimbing doktoralWilliam N. Lipscomb, Jr. Roald Hoffmann (lahir 1937 di Złoczów, Polandia (kini Zolochiv di Ukraina) diberi nama untuk menghormati penjelajah Norweg...

 

Aleksandar VučićVučić pada tahun 2017 Presiden SerbiaPetahanaMulai menjabat 31 Mei 2017Perdana MenteriIvica Dačić (Pelaksana Tugas) Ana BrnabićPendahuluTomislav NikolićPenggantiPetahanaPerdana Menteri SerbiaMasa jabatan27 April 2014 – 31 Mei 2017PresidenTomislav NikolićWakilIvica DačićPendahuluIvica DačićPenggantiIvica Dačić (Pelaksana Tugas) Informasi pribadiLahir5 Maret 1970 (umur 54)Beograd, Yugoslavia(sekarang Serbia)Partai politikRadikal (1993–2008)Pr...

 

ロバート・デ・ニーロRobert De Niro 2011年のデ・ニーロ生年月日 (1943-08-17) 1943年8月17日(80歳)出生地 アメリカ合衆国・ニューヨーク州ニューヨーク市身長 177 cm職業 俳優、映画監督、映画プロデューサージャンル 映画、テレビドラマ活動期間 1963年 -配偶者 ダイアン・アボット(1976年 - 1988年)グレイス・ハイタワー(1997年 - )主な作品 『ミーン・ストリート』(1973年)...

Barrier or low rails in front of the altar of a church Nineteenth-century wooden and iron altar rails in St Pancras Church, Ipswich The altar rail (also known as a communion rail or chancel rail) is a low barrier, sometimes ornate and usually made of stone, wood or metal in some combination, delimiting the chancel or the sanctuary and altar in a church,[1][2] from the nave and other parts that contain the congregation. Often, a central gate or gap divides the line into two par...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Suku Hui – berita · surat kabar · buku · cendekiawan · JSTOR Hui حُوِ ذَو/回族 (Huí Zú)Seorang pria tua HuiDaerah dengan populasi signifikanRepublik Rakyat TiongkokIndonesiaBahasaBahasa Tiongh...

 

Stasiun Aioiyama相生山駅Lokasi61, Aikawa 3-chōme, Midori, Nagoya, Aichi(名古屋市緑区相川3丁目61)JepangKoordinat35°06′09″N 136°58′34″E / 35.102545°N 136.976208°E / 35.102545; 136.976208Koordinat: 35°06′09″N 136°58′34″E / 35.102545°N 136.976208°E / 35.102545; 136.976208OperatorBiro Transportasi Kota NagoyaJalurJalur SakuradōriLayanan Pemberhentian bus Informasi lainKode stasiunS19SejarahDibuka2011Sunting...

LarsaTell Senkereh Localisation Pays Irak Province Dhi Qar Coordonnées 31° 17′ 09″ nord, 45° 51′ 13″ est Géolocalisation sur la carte : Irak LarsaLarsa modifier  Carte de la Mésopotamie avec les frontières des États modernes, l'ancien tracé du littoral du golfe Persique et les sites des grandes cités antiques. Localisation des principales cités de Mésopotamie à l'époque historique. Larsa (ou Larag ou Larak), qui est appelé aujourd...

 

13th-century English clergyman and Chancellor of England Richard MiddletonArchdeacon of NorthumberlandProvinceDurhamAppointedbefore 23 September 1271Term endedbefore 7 August 1272PredecessorRoger de HerteburnSuccessorThomas de BirlandOther post(s)Lord ChancellorPersonal detailsDied7 August 1272Lord ChancellorIn office29 July 1269 – before 7 August 1272MonarchsHenry III, Edward IPreceded byJohn ChishullSucceeded byWalter de Merton Richard Middleton (sometimes Richard of Middleton ...

 

Questa voce o sezione sull'argomento società calcistiche svizzere non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Fussball Nordstern Basel 1901(FC Nordstern)Calcio Segni distintiviUniformi di gara Casa Trasferta Colori sociali Rosso, nero Dati societariCittàBasilea Nazione Svizzera ConfederazioneUEFA Federazione SFV/FSF Fondazione1901 Presidente H...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Ariane 2 – berita · surat kabar · buku · cendekiawan · JSTOR Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau d...

 

Civil unrest and protests in support of land reform in late 19th-century Ireland For other uses, see Land War (disambiguation). Land WarPart of Irish Home Rule movementAn Irish family in Moyasta, County Clare being evicted c. 1879DateMain phase: 20 April 1879 – 6 May 1882 (1879-04-20 – 1882-05-06)Plan of Campaign: 1886–1891Ranch War: 1906–1911Further agitation: until 1923Caused byConcentration of land ownershipAbsentee landlords1879 famineGoalsFree s...

 

Subsurface layer in which groundwater seeps up from a water table by capillary action Cross-section of a hillslope depicting the vadose zone, capillary fringe, water table, and saturated zone The capillary fringe is the subsurface layer in which groundwater seeps up from a water table by capillary action to fill pores. Pores at the base of the capillary fringe are filled with water due to tension saturation. This saturated portion of the capillary fringe is less than the total capillary rise ...

Principato di BrandeburgoHohenzollern Federico I Figli Giovanni Federico Alberto Achille Federico Elisabetta Cecilia Margherita Maddalena Dorotea Nipoti Barbara Rodolfo Elisabetta Dorotea Federico, figlio naturale Federico II Figli Dorotea Margherita Alberto III Figli Giovanni Ursula Elisabetta Federico Amalia Barbara Sibilla Sigismondo Elisabetta Anastasia Giovanni I Figli Gioacchino Alberto Anna Ursula Gioacchino I Figli Gioacchino Elisabetta Giovanni Anna Margherita Gioacchino II Figli Gi...

 

Japanese WW2 battleship Mutsu around 1922 History Empire of Japan NameMutsu NamesakeMutsu Province BuilderYokosuka Naval Arsenal Laid down1 June 1918 Launched31 May 1920 Commissioned24 October 1921 Stricken1 September 1943 FateSunk by internal explosion, 8 June 1943 General characteristics (as built) Class and typeNagato-class battleship Displacement32,720 t (32,200 long tons) (standard) Length215.8 m (708 ft) (o/a) Beam28.96 m (95 ft) Draft9 m (29 ft 6 ...

 

Period in the history of the former state of Southern Rhodesia Part of a series on the History of Zimbabwe Ancient history Leopard's Kopje c. 900 – c. 1075 Mapungubwe Kingdom c. 1075 – c. 1220 Zimbabwe Kingdom c. 1220 – c. 1450 Butua Kingdom c. 1450–1683 Mutapa Kingdom c. 1450–1760 White settlement pre-1923 Rozvi Empire c. 1684–1834 Mthwakazi 1823-1894 Rudd Concession 1888 BSA Company rule 1890–1923 First Matab...

TERMIUM PlusCadreType Banque de terminologiePays  CanadaOrganisationAffiliation Bureau de la traductionSite web www.btb.termiumplus.gc.camodifier - modifier le code - modifier Wikidata TERMIUM Plus est la banque de données terminologiques et linguistiques du gouvernement du Canada. La banque compte près de quatre millions de termes tant généraux que spécialisés et propose pour chacun des équivalents dans les deux langues officielles du Canada (français et anglais) et parfois mêm...

 

Mathematical concept A function f from X to Y. The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = √x, whose domain consists of all nonnegative real numbers In mathematics, the domain of a function is the set of inputs accepted by the function. It is sometimes denoted by dom ⁡ ( f ) {\displaystyle \operatorname {dom} (f)} or dom ⁡ f {\displaystyle \operatorname {dom} f} , where f is the function. In layman's terms, ...