أيزو 3166-2:AG

أيزو 31166-2:AG هو الجزء المخصص لأنتيغوا وباربودا في أيزو 3166-2، وهو جزء من معيار أيزو 3166 الذي نشرته المنظمة الدولية للتوحيد القياسي (أيزو)، والذي يُعرف رموز لأسماء التقسيمات الرئيسية (مثل الأقاليم، الجهات، المقاطعات أو الولايات) من جميع البلدان في ترميز أيزو 3166-1.

يتكون كل رمز من جزأين ، يفصل بينهما فاصلة أفقية. الجزء الأول هو AG ، وهو رمز ISO 3166-1 alpha-2 الخاص بأنتيغوا وبربودا. أما الجزء الثاني يتكون من رقمين:

الرموز الحالية

الرمز أسم المقاطعة
AG-03 سانت جورج
AG-04 سانت جون
AG-05 سانت ماري
AG-06 سانت باول
AG-07 سانت بيتر
AG-08 سانت فيليب
AG-10 باربودا
AG-11 ريدوندا

طالع أيضاً

Read other articles:

Le Tribunal militaire international pour l'Extrême-Orient dans le quartier d'Ichigaya à Tokyo. Le Tribunal militaire international pour l'Extrême-Orient, en abrégé TMIEO[N 1], aussi nommé Tribunal de Tokyo, Tribunal militaire de Tokyo, est créé le 19 janvier 1946 pour juger les grands criminels de guerre japonais de la Seconde Guerre mondiale lors du procès de Tokyo. L'origine de sa création La création du TMIEO n'est qu'une des pièces d'un ensemble plus vaste de mesures prises po...

 

ХанствоВассал Османской империи (1478 — 1774)Вассал Российской империи (1774 — 1783)Крымское ханствокрым. Uluğ Orda ve Deşt-i Qıpçaq, اولوغ اوردا و دشت قپچاق‎ Тамга Гераев Крымское ханство (Tartaria Przecopensis рус. ‛Перекопская Татария’) на карте 1644 года. ← ← ←   → → 1441 — 1783 Ст�...

 

Urban adult contemporary radio station in New Orleans This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: WYLD-FM – news · newspapers · books · scholar · JSTOR (September 2008) (Learn how and when to remove this template message) WYLD-FMNew Orleans, LouisianaBroadcast areaNew Orleans metropolitan areaFrequency98...

Former attraction at Disney theme parks This article is about the former versions in the US, France and Japan. For the current Disneyland, Disney's Hollywood Studios, Tokyo Disneyland, and Disneyland Paris attraction, see Star Tours – The Adventures Continue. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Star Tours – news ...

 

Village in Estonia Village in Lääne-Viru County, EstoniaPudiverevillagePudivereLocation in EstoniaCoordinates: 59°05′21″N 26°21′24″E / 59.08917°N 26.35667°E / 59.08917; 26.35667Country EstoniaCounty Lääne-Viru CountyMunicipality Väike-Maarja ParishPopulation (01.01.2011[1]) • Total41 Pudivere is a village in Väike-Maarja Parish, Lääne-Viru County, in northeastern Estonia. It has a population of 41 (as of 1 January 2011)...

 

Marvel Comics superheroes For broader coverage of this topic, see List of incarnations of Spider-Man. Alternate versions of Spider-ManThe many versions of Spider-themed characters as seen in the Spider-Geddon storyline.Art by Nick Bradshaw.PublisherMarvel ComicsFirst appearanceAmazing Fantasy #15 (August 1962)Created byStan LeeSteve DitkoSee alsoSpider-Man in other mediaSpider-Man in video gamesSpider-Man in televisionList of incarnations of Spider-Man Spider-Man is the name of multiple comic...

МифологияРитуально-мифологическийкомплекс Система ценностей Сакральное Миф Мономиф Теория основного мифа Ритуал Обряд Праздник Жречество Мифологическое сознание Магическое мышление Низшая мифология Модель мира Цикличность Сотворение мира Мировое яйцо Мифическое �...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

Theorem about right triangles area of grey square = area of grey rectangle: h 2 = p q ⇔ h = p q {\displaystyle h^{2}=pq\Leftrightarrow h={\sqrt {pq}}} In Euclidean geometry, the geometric mean theorem or right triangle altitude theorem is a relation between the altitude on the hypotenuse in a right triangle and the two line segments it creates on the hypotenuse. It states that the geometric mean of the two segments equals the altitude. Theorem and applications Construction of p {\displ...

County in Maryland, United States This article is about the county in Maryland. For the independent city, see Baltimore. County in MarylandBaltimore CountyCountyThe Baltimore County Courthouse FlagSealNickname(s): BalCo, B-More County, The CountyLocation within the U.S. state of MarylandMaryland's location within the U.S.Coordinates: 39°24′N 76°36′W / 39.4°N 76.6°W / 39.4; -76.6Country United StatesState MarylandFoundedJune 30, 1659Named forCecil...

 

Major trunk road in northern England A69Route informationPart of Length54 mi (87 km)Major junctionsEast endWest DentonMajor intersections A1 A6085 A68 A6079 A686 A6071 A689 M6 A7West endCarlisle LocationCountryUnited KingdomPrimarydestinationsHexham Road network Roads in the United Kingdom Motorways A and B road zones ← A68→ A70 The A69 is a major northern trunk road in England, running east–west across the Pennines, through the counties of Tyne and Wear, Northu...

 

Municipality in Rio Grande do Sul, BrazilCapela de SantanaMunicipality FlagCoat of armsLocation within Rio Grande do SulCapela de SantanaLocation in BrazilCoordinates: 29°42′S 51°20′W / 29.700°S 51.333°W / -29.700; -51.333Country BrazilStateRio Grande do SulPopulation (2020[1]) • Total12,064Time zoneUTC−3 (BRT) Capela de Santana is a municipality in the state of Rio Grande do Sul, Brazil. See also List of municipalities in Ri...

Pengepungan ZaraBagian dari Perang Salib KeempatPengepungan ZaraTanggal10 November-23 November 1202LokasiKota Zadar (Zara)Hasil Tentara Salib merebut dan menjarah Zara[1][2]Pihak terlibat Tentara Salib Keempat Republik Venesia Kerajaan Hungaria DalmatiaTokoh dan pemimpin Otto IV Enrico Dandolo Emeric IKekuatan Tentara Salib: 10.000[3]Venesia: 10.000[3] Venesia: 210 kapal[4] Tidak diketahuiKorban Tidak diketahui Tidak diketahui Pengepungan Zara atau Peng...

 

1916 New Mexico gubernatorial election ← 1911 November 7, 1916 1918 →   Nominee Ezequiel Cabeza De Baca Holm O. Bursum Party Democratic Republican Popular vote 32,875 31,552 Percentage 49.40% 47.41% County resultsDe Baca:      40–50%      50–60%      60–70%      70–80%Bursum:      50-60%      60–70% ...

 

Dan Newhouse Daniel Milton Newhouse (lahir 10 Juli 1955) adalah seorang politikus dan ilmuwan pertanian Amerika Serikat asal Washington, yang sekarang menjabat sebagai anggota DPR. Sebelum terpilih dalam Kongres, Newhouse menjabat sebagai direktur Departemen Pertanian Washington dan anggota DPRD Washington. Ia berasal dari Partai Republik. Pranala luar Congressman Dan Newhouse official U.S. House website Campaign website Dan Newhouse di Curlie (dari DMOZ) Biografi di Biographical Directory of...

European first-class railway service For other uses, see Trans Europ Express (disambiguation). Trans Europe ExpressOverviewService typeInternational network of express trainsStatusDefunctLocaleWestern EuropeFirst service2 June 1957Last service28 May 1995[1]SuccessorVarious, including EuroCity, InterCity, TGV, Thalys and other systems.Former operator(s)The national railways of several European countriesOn-board servicesClass(es)1957–1991: First class only1993–1995 (Paris–Brussels...

 

Wihara Wat Rajabophit Sathitmahasimaram Rajawarawiharaวัดราชบพิธสถิตมหาสีมารามราชวรวิหาร (Thai: Wat Ratchabophit Sathitmahasimaram Ratchaworawihan)Bagian dalam ubosot wiharaAgamaAfiliasiBuddhisme ThammayutLokasiNegaraDistrik Phra Nakhon, Bangkok, ThailandLokasi di BangkokKoordinat13°44′57″N 100°29′50″E / 13.74917°N 100.49722°E / 13.74917; 100.49722ArsitekturDibangun olehRaja ChulalongkornRa...

 

Pruk PanichPanich in 2023Nama asalพฤกษ์ พานิชLahirSeptember 10, 1992 (1992-09-10) (usia 31)Nama lainZee, Zee PrukPekerjaanAktorTahun aktif2018-sekarangAgenDomundiKarya terkenal Fighter dalam Why R U? Lian dalam Cutie Pie Karier musikInstrumenVokalTahun aktif2022–sekarangLabelDMD Music Pruk Panich (bahasa Thai: พฤกษ์ พานิช, lahir 10 September 1992), nama panggilan Zee (ซี), adalah seorang aktor Thailand. Ia dikenal melalui ...

2000年問題(にせんねんもんだい、英語: Year 2000 problem)は、西暦(グレゴリオ暦)2000年になるとコンピュータが誤作動する可能性があるとされた年問題である。 Y2K問題(ワイツーケイもんだい、Y は年(year)、K はキロ(kilo=千))、ミレニアム・バグ(millennium bug)とも呼ばれた。 西暦2000年であることをコンピュータが正常に認識できなくなるという問題が主に�...

 

Italian politician Francesco Ceva GrimaldiBornFrancesco Maria Giuseppe Raffaele Ceva Grimaldi(1831-02-13)13 February 1831Naples, ItalyDied21 November 1899(1899-11-21) (aged 68)Rome, ItalyOccupationPoliticianRelativesFrancesco Ceva Grimaldi (cousin) Francesco Ceva Grimaldi (13 February 1831 – 21 November 1899) was an Italian politician. He was a Senator of the Kingdom of Italy and a Commander of the Order of the Crown of Italy. Life and career A member of a noble family of Genoese origi...