Sistema de numeros en matematicas
Conchuntos de numeros
Numeros destacables
π ≈ 3,14159265...
e ≈ 2,7182818284...
Φ ≈ 1,6180339887...
i :=
− − -->
1
{\displaystyle {\sqrt {-1}}}
Numeros con propiedatz destacables
Primers
P
{\displaystyle \mathbb {P} }
, abundants , amigos , compuestos , defectivos , perfectos , sociables , alchebraicos ,
transcendents
Estensions d'os numeros complexos
Numeros especials
Altros numeros importants
Sequencia d'enters
Constants matematicas
Listau de numeros
Numeros grans
Sistemas de numeración
Arabe , armenia ,
atica (griega) , babilonica ,
cirilica , echipciana ,
etrusca , griega ,
hebrea , india ,
chonica (griega) , chaponesa ,
khmer , maya ,
romana , tailandesa ,
chinesa .
En matematicas , π (pi) ye a constant d'Arquimedes , una constant que relaciona o diametro d'un cerclo con a longaria d'o suyo perimetro u circumferencia .
P
=
d
× × -->
π π -->
{\displaystyle P=d\times \pi }
π π -->
≈ ≈ -->
3,141
5926535...
{\displaystyle \pi \approx 3{,}1415926535...}
Un cerclo de diametro 1 tiene por circumferencia (perimetro) π.
O simbolo π se pronuncia [pi], que ye a deciseisena letra de alfabeto griego .
π ye un numero irracional , ye dicir, a suya parte fraccionaria tiene un numero de cifras infinito, y no se puet establir garra patrón que determine cuala será a que sigue a una determinada. Ta fer calculos se gosa prener a suya valura truncada (nomás as primeras cifras decimals) como: 3,14159265.
O numero π amás d'apareixer en a formula d'a lonchitut d'a cicumferencia, amaneixe en a-saber-las ecuacions matematicas derivadas d'ista: superficie y volumen d'o cerclo , d'a esfera ... y tamién en buena cosa d'ecuacions d'a fisica .
As cifras decimals d'o numero π son equiprobables, ye dicir, se puet contrimostrar con a teoría d'os grans numeros que as suyas cifras decimals amaneixen con a mesma probalidat.
Circumferencia d'o cerclo de radio r :
C
=
2
π π -->
r
{\displaystyle C=2\pi r}
Aria d'o cerclo de radio r :
A
=
π π -->
r
2
{\displaystyle A=\pi r^{2}}
Aria d'a elipse con semieixes a y b :
A
=
π π -->
a
b
{\displaystyle A=\pi ab}
Volumen d'a esfera de radio r :
A
=
f
r
a
c
4
3
π π -->
r
3
{\displaystyle A=frac{4}{3}\pi r^{3}}
Aria d'a superficie d'una esfera de radio r :
A
=
4
π π -->
r
2
{\displaystyle A=4\pi r^{2}}
Anglos : 180 graus son equivalents a
π π -->
{\displaystyle \pi }
radians
1
1
− − -->
1
3
+
1
5
− − -->
1
7
+
1
9
− − -->
⋯ ⋯ -->
=
π π -->
4
{\displaystyle {\frac {1}{1}}-{\frac {1}{3}}+{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}-\cdots ={\frac {\pi }{4}}}
(Formula de Leibniz )
2
1
⋅ ⋅ -->
2
3
⋅ ⋅ -->
4
3
⋅ ⋅ -->
4
5
⋅ ⋅ -->
6
5
⋅ ⋅ -->
6
7
⋅ ⋅ -->
8
7
⋅ ⋅ -->
8
9
⋯ ⋯ -->
=
π π -->
2
{\displaystyle {\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot {\frac {8}{7}}\cdot {\frac {8}{9}}\cdots ={\frac {\pi }{2}}}
(producto de Wallis )
ζ ζ -->
(
2
)
=
1
1
2
+
1
2
2
+
1
3
2
+
1
4
2
+
⋯ ⋯ -->
=
π π -->
2
6
{\displaystyle \zeta (2)={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{4^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}}
(Euler )
ζ ζ -->
(
4
)
=
1
1
4
+
1
2
4
+
1
3
4
+
1
4
4
+
⋯ ⋯ -->
=
π π -->
4
90
{\displaystyle \zeta (4)={\frac {1}{1^{4}}}+{\frac {1}{2^{4}}}+{\frac {1}{3^{4}}}+{\frac {1}{4^{4}}}+\cdots ={\frac {\pi ^{4}}{90}}}
∫ ∫ -->
− − -->
∞ ∞ -->
∞ ∞ -->
e
− − -->
x
2
d
x
=
π π -->
{\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}dx={\sqrt {\pi }}}
(integral de Gauss )
Γ Γ -->
(
1
2
)
=
π π -->
{\displaystyle \Gamma \left({1 \over 2}\right)={\sqrt {\pi }}}
n
!
≈ ≈ -->
2
π π -->
n
(
n
e
)
n
{\displaystyle n!\approx {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}}
(Formula de Stirling )
e
π π -->
i
+
1
=
0
{\displaystyle e^{\pi i}+1=0\;}
(Identitat d'Euler )
π tiene una representación en fraccions continas con propiedaz bien bonicas:
4
π π -->
=
1
+
1
3
+
4
5
+
9
7
+
16
9
+
25
11
+
36
13
+
.
.
.
{\displaystyle {\frac {4}{\pi }}=1+{\frac {1}{3+{\frac {4}{5+{\frac {9}{7+{\frac {16}{9+{\frac {25}{11+{\frac {36}{13+...}}}}}}}}}}}}}
(Se'n puede veyer atras 12 representacions en [1] )
A probalidat de que dos numeros trigaus aliatoriament sigan primos entre éls ye de 6/π2 .
A probalidat de que un entero trigau aliatoriament no tienga garra factor primo elevau a una potencia superior a 1 ye de 6/π2 .
Milenta cifras d'o numero pi
Istas son as primeras mil cifras d'o numero pi:
3.
1415926535 8979323846 2643383279 5028841971 6939937510
5820974944 5923078164 0628620899 8628034825 3421170679
8214808651 3282306647 0938446095 5058223172 5359408128
4811174502 8410270193 8521105559 6446229489 5493038196
4428810975 6659334461 2847564823 3786783165 2712019091
4564856692 3460348610 4543266482 1339360726 0249141273
7245870066 0631558817 4881520920 9628292540 9171536436
7892590360 0113305305 4882046652 1384146951 9415116094
3305727036 5759591953 0921861173 8193261179 3105118548
0744623799 6274956735 1885752724 8912279381 8301194912
9833673362 4406566430 8602139494 6395224737 1907021798
6094370277 0539217176 2931767523 8467481846 7669405132
0005681271 4526356082 7785771342 7577896091 7363717872
1468440901 2249534301 4654958537 1050792279 6892589235
4201995611 2129021960 8640344181 5981362977 4771309960
5187072113 4999999837 2978049951 0597317328 1609631859
5024459455 3469083026 4252230825 3344685035 2619311881
7101000313 7838752886 5875332083 8142061717 7669147303
5982534904 2875546873 1159562863 8823537875 9375195778
1857780532 1712268066 1300192787 6611195909 2164201989
[ 1]
Referencias
Vinclos externos