Exocentrus raffrayi
|
Read other articles:
Gempa bumi Nankai 1946Waktu UTC1946-12-20 19:19:10ISC898698USGS-ANSSComCatTanggal setempat21 Desember 1946 (1946-12-21)Waktu setempat04:19 JSTKekuatan8.1 MwKedalaman30 km (19 mi)Episentrum33°00′N 135°36′E / 33.00°N 135.60°E / 33.00; 135.60Koordinat: 33°00′N 135°36′E / 33.00°N 135.60°E / 33.00; 135.60 [1]SesarMegathrustWilayah bencanaJepangIntensitas maks.IX (Hebat)JMA 7TsunamiYaKorban1,362 te...
Commuter rail station in Bartlett, Illinois BartlettBartlett station in July 2023.General informationLocationOak Avenue and Railroad AvenueBartlett, ILCoordinates41°59′32″N 88°11′02″W / 41.9921°N 88.1838°W / 41.9921; -88.1838Owned byMetraPlatforms2 side platformsTracks2ConstructionParkingYesAccessibleYesOther informationFare zone4HistoryOpened1873Rebuilt2004–2007Passengers2018988 (average weekday)[1] 7.7%Rank53 out of 236[...
مجلس الأمة الكويتي 2024 الفصل التشريعي الثامن عشر القيادة الأمين العام خالد سعود بوصليبمنذ 22 يونيو 2023 الأعضاء 50 عضو منتخب من الشعب الكويتي، رئيس الوزراء والوزراء بحكم مناصبهم (عدد الوزراء وفقاً للدستور لا يتجاوز 15 وزير) الانتخابات نظام انتخابي 5 دوائر أنتخابية تنتخب كل دائر...
Every positive integer is a sum of at most n n-gonal numbers Not to be confused with Fermat's Last Theorem. In additive number theory, the Fermat polygonal number theorem states that every positive integer is a sum of at most n n-gonal numbers. That is, every positive integer can be written as the sum of three or fewer triangular numbers, and as the sum of four or fewer square numbers, and as the sum of five or fewer pentagonal numbers, and so on. That is, the n-gonal numbers form an additive...
List of events ← 1982 1981 1980 1983 in India → 1984 1985 1986 Centuries: 18th 19th 20th 21st Decades: 1960s 1970s 1980s 1990s 2000s See also:List of years in IndiaTimeline of Indian history Events in the year 1983 in the Republic of India. Incumbents President of India – Zail Singh Prime Minister of India – Indira Gandhi Vice President of India – Mohammad Hidayatullah Chief Justice of India – Yeshwant Vishnu Chandrachud Governors Andhra Pradesh – K. C. Abraham (until 1...
Podcast series PodcastMarvel's WastelandersPresentationStarringTimothy BusfieldStephen LangSusan SarandonRobert PatrickDylan BakerGenreSuperhero fictionLanguageEnglishProductionProductionMarvel New MediaSiriusXMNo. of episodes60PublicationOriginal release2021 –2023RelatedWebsitewww.marvel.com/wastelanders Marvel's Wastelanders is an interconnected series of six radio drama podcasts produced by Marvel New Media and SiriusXM in association with Wave Runner Studios and launched in June 20...
Relation between sides of a right triangle Pythagorean theoremTypeTheoremFieldEuclidean geometryStatementThe sum of the areas of the two squares on the legs (a and b) equals the area of the square on the hypotenuse (c).Symbolic statement a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}} Generalizations Law of cosines Solid geometry Non-Euclidean geometry Differential geometry Consequences Pythagorean triple Reciprocal Pythagorean theorem Complex number Euclidean distance Pythagorean trigonome...
Державний комітет телебачення і радіомовлення України (Держкомтелерадіо) Приміщення комітетуЗагальна інформаціяКраїна УкраїнаДата створення 2003Керівне відомство Кабінет Міністрів УкраїниРічний бюджет 1 964 898 500 ₴[1]Голова Олег НаливайкоПідвідомчі ор...
此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 ...
Biñan component city Tempat Negara berdaulatFilipinaIsland group of the PhilippinesLuzonRegion di FilipinaCalabarzonProvinsi di FilipinaLaguna NegaraFilipina Pembagian administratifBiñan Bungahan Canlalay Casile De La Paz Ganado Langkiwa Loma Malaban Malamig Mamplasan Platero Poblacion San Antonio San Francisco San Jose San Vicente Santo Domingo Soro-Soro Santo Niño Santo Tomas Timbao Tubigan Zapote PendudukTotal407.437 (2020 )Tempat tinggal117.720 (2020 )Bahasa resmiTagalog Ge...
Частина інформації в цій статті застаріла. Ви можете допомогти, оновивши її. Можливо, сторінка обговорення містить зауваження щодо потрібних змін. (липень 2020) Факультет іноземних студентів Тернопільського національного медичного університету імені І. Я. Горбаче...
Term for New York City following the 1898 consolidation with surrounding cities and towns This article is about the consolidation of New York City in 1898. For the greater metropolitan area that includes New York City today, see New York metropolitan area. The municipalities of modern-day New York City just before consolidation, excluding villages. New York County: City of New York Kings County: City of Brooklyn Queens County: Long Island City T...
Nama ini merupakan sebuah nama Belanda; nama keluarganya adalah de Ligt, bukan Ligt. Matthijs de Ligt De Ligt bersama JuventusInformasi pribadiNama lengkap Matthijs de LigtTanggal lahir 12 Agustus 1999 (umur 24)Tempat lahir Leiderdorp, BelandaTinggi 189 cm (6 ft 2 in)[1]Posisi bermain Bek tengahInformasi klubKlub saat ini Bayern MunchenNomor 4Karier junior2008–2016 AjaxKarier senior*Tahun Tim Tampil (Gol)2016–2017 Jong Ajax 17 (1)2016–2019 Ajax 77 (8)2019–2...
English theatre and film director (1925–2022) This article is about the theatre and film director. For the painter, see Peter Brook (painter). For other people with similar names, see Peter Brooke and Peter Brooks. Peter BrookCH CBEBrook in 2009BornPeter Stephen Paul Brook(1925-03-21)21 March 1925Chiswick, EnglandDied2 July 2022(2022-07-02) (aged 97)Paris, FranceOccupation(s)Theatre and film directorYears active1943–2022Spouse Natasha Parry (m. 19...
فيوريل إيزو معلومات شخصية الميلاد 6 فبراير 1947 (العمر 77 سنة)سيبيو مركز اللعب حارس مرمى الجنسية رومانيا الفرق التي دربها سنوات فريق 1984–1991 FC Inter Sibiu [الإنجليزية] (مساعد) 1991–1993 FC Inter Sibiu [الإنجليزية] 1993–1995 رابيد بوخارست 1995 FC Progresul București [الإنجليزية] 199...
Voce principale: Frosinone Calcio. Associazione Sportiva FrosinoneStagione 1982-1983Sport calcio Squadra Frosinone Allenatore Mario Facco Presidente Umberto Celani Serie C25º posto nel girone D. Maggiori presenzeCampionato: Bencivenga, Cari (34) Miglior marcatoreCampionato: Santarelli (8) 1981-1982 1983-1984 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti l'Associazione Sportiva Frosinone nelle competizioni ufficiali della stagione 1982-1983. In...
Certosina patterns around the larger carved bone panels in a casket by the Embriachi workshop Certosina is a decorative art technique of inlaying used widely in the Italian Renaissance period. Similar to marquetry, it uses small pieces of wood, bone, ivory, metal, or mother-of-pearl to create inlaid geometric patterns on a wood base.[1] The term comes from Carthusian monasteries (Certosa in Italian, Charterhouse in English),[2] probably the Certosa di Pavia, where the techniqu...
Voce principale: Bassa Bresciana. Questa voce o sezione sull'argomento Centri abitati della Lombardia non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Questa voce sull'argomento Provincia di Brescia è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Bassa Bresciana Ori...
Legal concept meaning powers are exceeded Wilmington, Delaware is the incorporation capital of the United States.[1] Delaware has largely abolished ultra vires in relation to corporations under the Delaware General Corporation Law.[2] Ultra vires ('beyond the powers') is a Latin phrase used in law to describe an act that requires legal authority but is done without it. Its opposite, an act done under proper authority, is intra vires ('within the powers'). Acts that are intra v...
Der zeremonielle Platz Otağ Der Türkische Staatsfriedhof (türkisch Devlet Mezarlığı) ist ein bedeutender Friedhof für ranghohe Generäle des türkischen Unabhängigkeitskrieges und Staatsmänner der Republik in Ankara. Zugleich ist er eine Denkmalanlage und ein besuchsoffener Park mit einer 536.000 m² großen Fläche im Westen Ankaras, der in die Waldfarm Atatürks eingebettet ist. Inhaltsverzeichnis 1 Geschichte 2 Bestattete Persönlichkeiten 2.1 Präsidenten 2.2 Ministerpräsidenten...