Daftar tetapan matematis
Sebuah tetapan matematika adalah sebuah bilangan kunci yang nilainya ditetapkan oleh sebuah definisi yang tidak ambigu, sering kali dirujuk oleh sebuah simbol (misalnya, sebuah huruf alfabet ), atau oleh nama matematikawan untuk mempermudah penggunaannya di berbagai masalah-masalah matematika .[ 1] [ 2] Sebagai contoh, tetapan π dapat didefinisikan sebagai rasio dari panjang sebuah keliling lingkaran dengan diameter nya. Daftar berikut ini termasuk sebuah ekspansi desimal dan kumpulan yang berisi setiap bilangan, diurutkan berdasarkan tahun penemuan.
Penjelasan dari simbol-simbol di kolom sebelah kanan dapat ditemukan dengan mengkliknya.
Zaman dahulu
Abad pertengahan dan modern awal
Nama
Simbol
Ekspansi desimal
Rumus
Tahun
Himpunan
Satuan khayal [ 1] [ 11]
i
{\displaystyle {i}}
0 + 1i
Baik dari dua akar dari
x
2
=
−
1
{\displaystyle x^{2}=-1}
[ nb 2]
1501 hingga 1576
C
{\displaystyle \mathbb {C} }
Tetapan Wallis
W
{\displaystyle W}
2.09455 14815 42326 59148 [ Mw 6] [ OEIS 8]
45
−
1929
18
3
+
45
+
1929
18
3
{\displaystyle {\sqrt[{3}]{\frac {45-{\sqrt {1929}}}{18}}}+{\sqrt[{3}]{\frac {45+{\sqrt {1929}}}{18}}}}
1616 hingga 1703
A
{\displaystyle \mathbb {A} }
Bilangan Euler [ 1] [ 12]
e
{\displaystyle {e}}
2.71828 18284 59045 23536 [ Mw 7] [ OEIS 9]
lim
n
→
∞
(
1
+
1
n
)
n
{\displaystyle \lim _{n\to \infty }\!\left(\!1\!+\!{\frac {1}{n}}\right)^{n}}
[ nb 3]
1618[ 13]
T
{\displaystyle \mathbb {T} }
Logaritma natural dari 2 [ 14]
ln
2
{\displaystyle \ln 2}
0.69314 71805 59945 30941 [ Mw 8] [ OEIS 10]
∑
n
=
1
∞
1
n
2
n
=
∑
n
=
1
∞
(
−
1
)
n
+
1
n
=
1
1
−
1
2
+
1
3
−
1
4
+
⋯
{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n2^{n}}}=\sum _{n=1}^{\infty }{\frac {({-}1)^{n+1}}{n}}={\frac {1}{1}}-{\frac {1}{2}}+{\frac {1}{3}}-{\frac {1}{4}}+{\cdots }}
1619,[ 15] 1668[ 16]
T
{\displaystyle \mathbb {T} }
Mimpi Sophomore 1 J.Bernoulli [ 17]
I
1
{\displaystyle {I}_{1}}
0.78343 05107 12134 40705 [ OEIS 11]
∫
0
1
x
x
d
x
=
∑
n
=
1
∞
(
−
1
)
n
+
1
n
n
=
1
1
1
−
1
2
2
+
1
3
3
−
⋯
{\displaystyle \int _{0}^{1}\!x^{x}\,dx=\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{n}}}={\frac {1}{1^{1}}}-{\frac {1}{2^{2}}}+{\frac {1}{3^{3}}}-{\cdots }}
1697
Mimpi Sophomore 2 J.Bernoulli [ 18]
I
2
{\displaystyle {I}_{2}}
1.29128 59970 62663 54040 [ Mw 9] [ OEIS 12]
∫
0
1
1
x
x
d
x
=
∑
n
=
1
∞
1
n
n
=
1
1
1
+
1
2
2
+
1
3
3
+
1
4
4
+
⋯
{\displaystyle \int _{0}^{1}\!{\frac {1}{x^{x}}}\,dx=\sum _{n=1}^{\infty }{\frac {1}{n^{n}}}={\frac {1}{1^{1}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{3}}}+{\frac {1}{4^{4}}}+\cdots }
1697
Tetapan lemniskat [ 19]
ϖ
{\displaystyle {\varpi }}
2.62205 75542 92119 81046 [ Mw 10] [ OEIS 13]
π
G
=
4
2
π
Γ
(
5
4
)
2
=
1
4
2
π
Γ
(
1
4
)
2
=
4
2
π
(
1
4
!
)
2
{\displaystyle \pi \,{G}=4{\sqrt {\tfrac {2}{\pi }}}\,\Gamma {\left({\tfrac {5}{4}}\right)^{2}}={\tfrac {1}{4}}{\sqrt {\tfrac {2}{\pi }}}\,\Gamma {\left({\tfrac {1}{4}}\right)^{2}}=4{\sqrt {\tfrac {2}{\pi }}}\left({\tfrac {1}{4}}!\right)^{2}}
1718 to 1798
T
{\displaystyle \mathbb {T} }
Tetapan Euler–Mascheroni [ 20]
γ
{\displaystyle {\gamma }}
0.57721 56649 01532 86060 [ Mw 11] [ OEIS 14]
∑
n
=
1
∞
∑
k
=
0
∞
(
−
1
)
k
2
n
+
k
=
∑
n
=
1
∞
(
1
n
−
ln
(
1
+
1
n
)
)
=
∫
0
1
−
ln
(
ln
1
x
)
d
x
=
−
Γ
′
(
1
)
=
−
Ψ
(
1
)
{\displaystyle {\begin{aligned}\sum _{n=1}^{\infty }\sum _{k=0}^{\infty }{\frac {(-1)^{k}}{2^{n}+k}}&=\sum _{n=1}^{\infty }\left({\frac {1}{n}}-\ln \left(1+{\frac {1}{n}}\right)\right)\\&=\int _{0}^{1}-\ln \left(\ln {\frac {1}{x}}\right)\,dx=-\Gamma '(1)=-\Psi (1)\end{aligned}}}
1735
R
∖
Q
{\displaystyle \mathbb {R} \setminus \mathbb {Q} }
?
Analog mengenai tetapan Euler–Mascheroni
γ
{\displaystyle {\gamma }}
0.42816 57248 71235 07519
lim
n
→
∞
(
∑
k
=
2
n
1
k
ln
(
k
)
−
ln
(
ln
(
n
)
)
+
ln
(
ln
(
2
)
)
)
{\displaystyle \lim _{n\to \infty }\!\left(\sum _{k=2}^{n}{\frac {1}{k\ln(k)}}-\ln \left(\ln(n)\right)+\ln \left(\ln(2)\right)\!\right)}
1735 hingga 1745
T
{\displaystyle \mathbb {T} }
?
Tetapan Erdős–Borwein [ 21]
E
B
{\displaystyle {E}_{\,B}}
1.60669 51524 15291 76378 [ Mw 12] [ OEIS 15]
∑
m
=
1
∞
∑
n
=
1
∞
1
2
m
n
=
∑
n
=
1
∞
1
2
n
−
1
=
1
1
+
1
3
+
1
7
+
1
15
+
.
.
.
{\displaystyle \sum _{m=1}^{\infty }\sum _{n=1}^{\infty }{\frac {1}{2^{mn}}}=\sum _{n=1}^{\infty }{\frac {1}{2^{n}-1}}={\frac {1}{1}}\!+\!{\frac {1}{3}}\!+\!{\frac {1}{7}}\!+\!{\frac {1}{15}}\!+\!...}
1749[ 22]
R
∖
Q
{\displaystyle \mathbb {R} \setminus \mathbb {Q} }
Limit Laplace [ 23]
λ
{\displaystyle {\lambda }}
0.66274 34193 49181 58097 [ Mw 13] [ OEIS 16]
x
e
x
2
+
1
x
2
+
1
+
1
=
1
{\displaystyle {\frac {x\;e^{\sqrt {x^{2}+1}}}{{\sqrt {x^{2}+1}}+1}}=1}
~1782
T
{\displaystyle \mathbb {T} }
?
Tetapan Gauss [ 24]
G
{\displaystyle {G}}
0.83462 68416 74073 18628 [ Mw 14] [ OEIS 17]
1
a
g
m
(
1
,
2
)
=
4
2
(
1
4
!
)
2
π
3
2
=
2
π
∫
0
1
d
x
1
−
x
4
{\displaystyle {\frac {1}{\mathrm {agm} \left(1,{\sqrt {2}}\right)}}={\frac {4{\sqrt {2}}\,\left({\tfrac {1}{4}}!\right)^{2}}{\pi ^{3}{2}}}={\frac {2}{\pi }}\int _{0}^{1}{\frac {dx}{\sqrt {1-x^{4}}}}}
dimana agm berarti purata aritmetik-geometrik
1799[ 25]
T
{\displaystyle \mathbb {T} }
Abad ke-19
Nama
Simbol
Ekspansi desimal
Rumus
Tahun
Himpunan
Tetapan Ramanujan–Soldner [ 26] [ 27]
μ
{\displaystyle {\mu }}
1.45136 92348 83381 05028 [ Mw 15] [ OEIS 18]
l
i
(
x
)
=
∫
0
x
d
t
ln
t
=
0
{\displaystyle \mathrm {li} (x)=\int \limits _{0}^{x}{\frac {dt}{\ln t}}=0}
Akar dari fungsi integral logaritmik .
1812[ Mw 16]
Tetapan Hermite [ 28]
γ
2
{\displaystyle \gamma _{_{2}}}
1.15470 05383 79251 52901 [ Mw 17]
2
3
=
1
cos
(
π
6
)
{\displaystyle {\frac {2}{\sqrt {3}}}={\frac {1}{\cos \,({\frac {\pi }{6}})}}}
1822 hingga 1901
A
{\displaystyle \mathbb {A} }
Bilangan Liouville [ 29]
£
Li
{\displaystyle {\text{£}}_{\text{Li}}}
0.11000 10000 00000 00000 0001 [ Mw 18] [ OEIS 19]
∑
n
=
1
∞
1
10
n
!
=
1
10
1
!
+
1
10
2
!
+
1
10
3
!
+
1
10
4
!
+
⋯
{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{10^{n!}}}={\frac {1}{10^{1!}}}+{\frac {1}{10^{2!}}}+{\frac {1}{10^{3!}}}+{\frac {1}{10^{4!}}}+\cdots }
Sebelum tahun 1844
T
{\displaystyle \mathbb {T} }
Hermite–Ramanujan constant [ 30]
R
{\displaystyle {R}}
262 53741 26407 68743 .99999 99999 99250 073 [ Mw 19] [ OEIS 20]
e
π
163
{\displaystyle e^{\pi {\sqrt {163}}}}
1859
T
{\displaystyle \mathbb {T} }
Tetapan Catalan [ 31] [ 32] [ 33]
C
{\displaystyle {C}}
0.91596 55941 77219 01505 [ Mw 20] [ OEIS 21]
∫
0
1
∫
0
1
1
1
+
x
2
y
2
d
x
d
y
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
+
1
)
2
=
1
1
2
−
1
3
2
+
⋯
{\displaystyle \int _{0}^{1}\!\!\int _{0}^{1}\!\!{\frac {1}{1{+}x^{2}y^{2}}}\,\mathrm {d} x\,\mathrm {d} y=\!\sum _{n=0}^{\infty }\!{\frac {(-1)^{n}}{(2n{+}1)^{2}}}\!=\!{\frac {1}{1^{2}}}{-}{\frac {1}{3^{2}}}{+}{\cdots }}
1864
T
{\displaystyle \mathbb {T} }
?
Bilangan Dottie [ 34]
d
{\displaystyle d}
0.73908 51332 15160 64165 [ Mw 21] [ OEIS 22]
lim
x
→
∞
cos
[
x
]
(
c
)
=
lim
x
→
∞
cos
(
cos
(
cos
(
⋯
(
cos
(
c
)
)
)
)
)
⏟
x
{\displaystyle \lim _{x\to \infty }\cos ^{[x]}(c)=\lim _{x\to \infty }\underbrace {\cos(\cos(\cos(\cdots (\cos(c)))))} _{x}}
1865[ Mw 21]
T
{\displaystyle \mathbb {T} }
Tetapan Meissel–Mertens [ 35]
M
{\displaystyle {M}}
0.26149 72128 47642 78375 [ Mw 22] [ OEIS 23]
lim
n
→
∞
(
∑
p
≤
n
1
p
−
ln
(
ln
(
n
)
)
)
=
γ
+
∑
p
(
ln
(
1
−
1
p
)
+
1
p
)
γ
:
tetapan Euler
,
p
:
prima
{\displaystyle \lim _{n\rightarrow \infty }\!\!\left(\sum _{p\leq n}{\frac {1}{p}}\!-\ln(\ln(n))\!\right)\!\!={\underset {\!\!\!\!\gamma :\,{\text{tetapan Euler}},\,\,p:\,{\text{prima}}}{\!\gamma \!+\!\!\sum _{p}\!\left(\!\ln \!\left(\!1\!-\!{\frac {1}{p}}\!\right)\!\!+\!{\frac {1}{p}}\!\right)}}}
1866 dan 1873
T
{\displaystyle \mathbb {T} }
?
Tetapan Weierstrass [ 36]
σ
(
1
2
)
{\displaystyle \sigma \left({\frac {1}{2}}\right)}
0.47494 93799 87920 65033 [ Mw 23] [ OEIS 24]
e
π
8
π
4
⋅
2
3
/
4
(
1
4
!
)
2
{\displaystyle {\frac {e^{\frac {\pi }{8}}{\sqrt {\pi }}}{4\cdot 2^{3/4}{({\frac {1}{4}}!)^{2}}}}}
1872 ?
Tetapan Hafner–Sarnak–McCurley (2) [ 37]
1
ζ
(
2
)
{\displaystyle {\frac {1}{\zeta (2)}}}
0.60792 71018 54026 62866 [ Mw 24] [ OEIS 25]
6
π
2
=
∏
n
=
0
∞
(
1
−
1
p
n
2
)
p
n
:
prime
=
(
1
−
1
2
2
)
(
1
−
1
3
2
)
(
1
−
1
5
2
)
⋯
{\displaystyle {\frac {6}{\pi ^{2}}}=\prod _{n=0}^{\infty }{\underset {p_{n}:{\text{ prime}}}{\!\left(\!1-{\frac {1}{{p_{n}}^{2}}}\!\right)}}\!=\!\textstyle \left(1\!-\!{\frac {1}{2^{2}}}\right)\!\left(1\!-\!{\frac {1}{3^{2}}}\right)\!\left(1\!-\!{\frac {1}{5^{2}}}\right)\cdots }
1883[ Mw 24]
T
{\displaystyle \mathbb {T} }
Tetapan Cahen [ 38]
ξ
2
{\displaystyle \xi _{2}}
0.64341 05462 88338 02618 [ Mw 25] [ OEIS 26]
∑
k
=
1
∞
(
−
1
)
k
s
k
−
1
=
1
1
−
1
2
+
1
6
−
1
42
+
1
1806
±
⋯
{\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k}}{s_{k}-1}}={\frac {1}{1}}-{\frac {1}{2}}+{\frac {1}{6}}-{\frac {1}{42}}+{\frac {1}{1806}}{\,\pm \cdots }}
Dimana
s
k
{\displaystyle s_{k}}
adalah suku ke-
k
{\displaystyle k}
dari barisan Sylvester 2, 3, 7, 43, 1807, ... Didefinsikan sebagai:
S
0
=
2
,
S
k
=
1
+
∏
n
=
0
k
−
1
S
n
untuk
k
>
0
{\displaystyle \,\,S_{0}=\,2,\,\,S_{k}=\,1+\prod \limits _{n=0}^{k-1}S_{n}{\text{ untuk}}\;k>0}
1891
T
{\displaystyle \mathbb {T} }
Tetapan parabolik semesta [ 39]
P
2
{\displaystyle {P}_{\,2}}
2.29558 71493 92638 07403 [ Mw 26] [ OEIS 27]
ln
(
1
+
2
)
+
2
=
arcsinh
(
1
)
+
2
{\displaystyle \ln(1+{\sqrt {2}})+{\sqrt {2}}\;=\;\operatorname {arcsinh} (1)+{\sqrt {2}}}
Sebelum 1891[ 40]
T
{\displaystyle \mathbb {T} }
Tetapan Apéry [ 41]
ζ
(
3
)
{\displaystyle \zeta (3)}
1.20205 69031 59594 28539 [ Mw 27] [ OEIS 28]
∑
n
=
1
∞
1
n
3
=
1
1
3
+
1
2
3
+
1
3
3
+
1
4
3
+
1
5
3
+
⋯
=
1
2
∑
i
=
1
∞
∑
j
=
1
∞
1
i
j
(
i
+
j
)
=
∫
0
1
∫
0
1
∫
0
1
d
x
d
y
d
z
1
−
x
y
z
{\displaystyle {\begin{aligned}\sum _{n=1}^{\infty }{\frac {1}{n^{3}}}&={\frac {1}{1^{3}}}+{\frac {1}{2^{3}}}+{\frac {1}{3^{3}}}+{\frac {1}{4^{3}}}+{\frac {1}{5^{3}}}+\cdots \\&={\frac {1}{2}}\sum _{i=1}^{\infty }\sum _{j=1}^{\infty }{\frac {1}{ij(i{+}j)}}\\&=\!\!\int \limits _{0}^{1}\!\!\int \limits _{0}^{1}\!\!\int \limits _{0}^{1}{\frac {\mathrm {d} x\,\mathrm {d} y\,\mathrm {d} z}{1-xyz}}\end{aligned}}}
1895[ 42]
R
∖
Q
{\displaystyle \mathbb {R} \setminus \mathbb {Q} }
T
{\displaystyle \mathbb {T} }
?
Tetapan Gelfond [ 43]
e
π
{\displaystyle {e}^{\pi }}
23.14069 26327 79269 0057 [ Mw 28] [ OEIS 29]
(
−
1
)
−
i
=
i
−
2
i
=
∑
n
=
0
∞
π
n
n
!
=
1
+
π
1
1
+
π
2
2
+
π
3
6
+
⋯
{\displaystyle (-1)^{-i}=i^{-2i}=\sum _{n=0}^{\infty }{\frac {\pi ^{n}}{n!}}=1+{\frac {\pi ^{1}}{1}}+{\frac {\pi ^{2}}{2}}+{\frac {\pi ^{3}}{6}}+\cdots }
1900[ 44]
T
{\displaystyle \mathbb {T} }
1900–1949
Nama
Simbol
Ekspansi desimal
Rumus
Tahun
Himpunan
Tetapan Favard [ 45]
3
4
ζ
(
2
)
{\displaystyle {\frac {3}{4}}\zeta (2)}
1.23370 05501 36169 82735 [ Mw 29] [ OEIS 30]
π
2
8
=
∑
n
=
0
∞
1
(
2
n
−
1
)
2
=
1
1
2
+
1
3
2
+
1
5
2
+
1
7
2
+
⋯
{\displaystyle {\frac {\pi ^{2}}{8}}=\sum _{n=0}^{\infty }{\frac {1}{(2n-1)^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{5^{2}}}+{\frac {1}{7^{2}}}+\cdots }
1902 hingga 1965
T
{\displaystyle \mathbb {T} }
Sudut emas [ 46]
b
{\displaystyle {b}}
2.39996 32297 28653 32223 [ Mw 30] [ OEIS 31]
(
4
−
2
Φ
)
π
=
(
3
−
5
)
π
=
137.5077640500378546
…
∘
{\displaystyle (4-2\,\Phi )\,\pi =(3-{\sqrt {5}})\,\pi =137.5077640500378546\dots ^{\circ }}
1907
T
{\displaystyle \mathbb {T} }
Tetapan Sierpiński [ 47]
K
{\displaystyle {K}}
2.58498 17595 79253 21706 [ Mw 31] [ OEIS 32]
π
(
2
γ
+
ln
4
π
3
Γ
(
1
4
)
4
)
=
π
(
2
γ
+
4
ln
Γ
(
3
4
)
−
ln
π
)
=
π
(
2
ln
2
+
3
ln
π
+
2
γ
−
4
ln
Γ
(
1
4
)
)
{\displaystyle {\begin{aligned}\pi \left(2\gamma +\ln {\frac {4\pi ^{3}}{\Gamma ({\tfrac {1}{4}})^{4}}}\right)&=\pi (2\gamma +4\ln \Gamma ({\tfrac {3}{4}})-\ln \pi )\\&=\pi \left(2\ln 2+3\ln \pi +2\gamma -4\ln \Gamma ({\tfrac {1}{4}})\right)\end{aligned}}}
1907
Tetapan Nielsen –Ramanujan [ 48]
ζ
(
2
)
2
{\displaystyle {\frac {{\zeta }(2)}{2}}}
0.82246 70334 24113 21823 [ Mw 32] [ OEIS 33]
π
2
12
=
∑
n
=
1
∞
(
−
1
)
n
+
1
n
2
=
1
1
2
−
1
2
2
+
1
3
2
−
1
4
2
+
1
5
2
−
⋯
{\displaystyle {\frac {\pi ^{2}}{12}}=\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{2}}}={\frac {1}{1^{2}}}{-}{\frac {1}{2^{2}}}{+}{\frac {1}{3^{2}}}{-}{\frac {1}{4^{2}}}{+}{\frac {1}{5^{2}}}{-}\cdots }
1909
T
{\displaystyle \mathbb {T} }
Luas dari fraktal Mandelbrot [ 49]
γ
{\displaystyle \gamma }
1.5065918849 ± 0.0000000028 [ Mw 33] [ OEIS 34]
1912
Tetapan Gieseking (de ) [ 50]
π
ln
β
{\displaystyle {\pi \ln \beta }}
1.01494 16064 09653 62502 [ Mw 34] [ OEIS 35]
3
3
4
(
1
−
∑
n
=
0
∞
1
(
3
n
+
2
)
2
+
∑
n
=
1
∞
1
(
3
n
+
1
)
2
)
=
3
3
4
(
1
−
1
2
2
+
1
4
2
−
1
5
2
+
1
7
2
−
1
8
2
+
1
10
2
±
⋯
)
{\displaystyle {\begin{aligned}{\frac {3{\sqrt {3}}}{4}}\left(1-\sum _{n=0}^{\infty }{\frac {1}{(3n+2)^{2}}}+\sum _{n=1}^{\infty }{\frac {1}{(3n+1)^{2}}}\right)&={\frac {3{\sqrt {3}}}{4}}\left(1-{\frac {1}{2^{2}}}+{\frac {1}{4^{2}}}-{\frac {1}{5^{2}}}+{\frac {1}{7^{2}}}-{\frac {1}{8^{2}}}+{\frac {1}{10^{2}}}\pm \cdots \right)\end{aligned}}}
1912
Tetapan Bernstein [ 51]
β
{\displaystyle {\beta }}
0.28016 94990 23869 13303 [ Mw 35] [ OEIS 36]
≈
1
2
π
{\displaystyle \approx {\frac {1}{2{\sqrt {\pi }}}}}
1913
Tetapan bilangan prima kembar [ 52]
C
2
{\displaystyle {C}_{2}}
0.66016 18158 46869 57392 [ Mw 36] [ OEIS 37]
∏
p
=
3
∞
p
(
p
−
2
)
(
p
−
1
)
2
{\displaystyle \prod _{p=3}^{\infty }{\frac {p(p-2)}{(p-1)^{2}}}}
1922
Bilangan plastik [ 53]
ρ
{\displaystyle {\rho }}
1.32471 79572 44746 02596 [ Mw 37] [ OEIS 38]
1
+
1
+
1
+
⋯
3
3
3
=
1
2
+
69
18
3
+
1
2
−
69
18
3
{\displaystyle {\sqrt[{3}]{1+\!{\sqrt[{3}]{1+\!{\sqrt[{3}]{1+\cdots }}}}}}=\textstyle {\sqrt[{3}]{{\frac {1}{2}}+{\frac {\sqrt {69}}{18}}}}+{\sqrt[{3}]{{\frac {1}{2}}-{\frac {\sqrt {69}}{18}}}}}
1929
A
{\displaystyle \mathbb {A} }
Tetapan Bloch–Landau [ 54]
L
{\displaystyle {L}}
0.54325 89653 42976 70695 [ Mw 38] [ OEIS 39]
=
Γ
(
1
3
)
Γ
(
5
6
)
Γ
(
1
6
)
=
(
−
2
3
)
!
(
−
1
+
5
6
)
!
(
−
1
+
1
6
)
!
{\displaystyle ={\frac {\Gamma ({\tfrac {1}{3}})\;\Gamma ({\tfrac {5}{6}})}{\Gamma ({\tfrac {1}{6}})}}={\frac {(-{\tfrac {2}{3}})!\;(-1+{\tfrac {5}{6}})!}{(-1+{\tfrac {1}{6}})!}}}
1929
Tetapan Golomb–Dickman [ 55]
λ
{\displaystyle {\lambda }}
0.62432 99885 43550 87099 [ Mw 39] [ OEIS 40]
∫
0
∞
f
(
x
)
x
2
d
x
Para
x
>
2
=
∫
0
1
e
Li
(
n
)
d
n
{\displaystyle \int \limits _{0}^{\infty }{\underset {{\text{Para }}x>2}{{\frac {f(x)}{x^{2}}}\,\mathrm {d} x}}=\int \limits _{0}^{1}e^{\operatorname {Li} (n)}\mathrm {d} n}
dimana
Li
{\displaystyle \operatorname {Li} }
adalah integral logaritmik .
1930 dan 1964
Tetapan Feller–Tornier [ 56]
C
F
T
{\displaystyle {{\mathcal {C}}_{_{FT}}}}
0.66131 70494 69622 33528 [ Mw 40] [ OEIS 41]
1
2
∏
n
=
1
∞
(
1
−
2
p
n
2
)
+
1
2
p
n
:
p
r
i
m
e
=
3
π
2
∏
n
=
1
∞
(
1
−
1
p
n
2
−
1
)
+
1
2
{\displaystyle {\underset {p_{n}:\,{prime}}{{\frac {1}{2}}\prod _{n=1}^{\infty }\left(1-{\frac {2}{p_{n}^{2}}}\right){+}{\frac {1}{2}}}}={\frac {3}{\pi ^{2}}}\prod _{n=1}^{\infty }\left(1-{\frac {1}{p_{n}^{2}-1}}\right){+}{\frac {1}{2}}}
1932
T
{\displaystyle \mathbb {T} }
?
Tetapan Champernowne basis 10[ 57]
C
10
{\displaystyle C_{10}}
0.12345 67891 01112 13141 [ Mw 41] [ OEIS 42]
∑
n
=
1
∞
∑
k
=
10
n
−
1
10
n
−
1
k
10
k
n
−
9
∑
j
=
0
n
−
1
10
j
(
n
−
j
−
1
)
{\displaystyle \sum _{n=1}^{\infty }\;\sum _{k=10^{n-1}}^{10^{n}-1}{\frac {k}{10^{kn-9\sum _{j=0}^{n-1}10^{j}(n-j-1)}}}}
1933
T
{\displaystyle \mathbb {T} }
Tetapan Gelfond–Schneider [ 58]
G
G
S
{\displaystyle G_{\,GS}}
2.66514 41426 90225 18865 [ Mw 42] [ OEIS 43]
2
2
{\displaystyle 2^{\sqrt {2}}}
1934
T
{\displaystyle \mathbb {T} }
Tetapan Khinchin [ 59]
K
0
{\displaystyle K_{\,0}}
2.68545 20010 65306 44530 [ Mw 43] [ OEIS 44]
∏
n
=
1
∞
[
1
+
1
n
(
n
+
2
)
]
ln
n
ln
2
{\displaystyle \prod _{n=1}^{\infty }\left[{1+{1 \over n(n+2)}}\right]^{\frac {\ln n}{\ln 2}}}
1934
T
{\displaystyle \mathbb {T} }
?
Tetapan Khinchin–Lévy [ 60]
β
{\displaystyle {\beta }}
1.18656 91104 15625 45282 [ Mw 44] [ OEIS 45]
π
2
12
ln
2
{\displaystyle {\frac {\pi ^{2}}{12\,\ln 2}}}
1935
Tetapan Khinchin–Lévy [ 61]
e
β
{\displaystyle e^{\beta }}
3.27582 29187 21811 15978 [ Mw 45] [ OEIS 46]
e
π
2
12
ln
2
{\displaystyle e^{\frac {\pi ^{2}}{12\ln 2}}}
1936
Tetapan Mills [ 62]
θ
{\displaystyle {\theta }}
1.30637 78838 63080 69046 [ Mw 46] [ OEIS 47]
⌊
θ
3
n
⌋
{\displaystyle \lfloor \theta ^{3^{n}}\rfloor }
adalah prima.
1947
Tetapan Euler–Gompertz [ 63]
G
{\displaystyle {G}}
0.59634 73623 23194 07434 [ Mw 47] [ OEIS 48]
∫
0
∞
e
−
n
1
+
n
d
n
=
∫
0
1
1
1
−
ln
n
d
n
=
1
1
+
1
1
+
1
1
+
2
1
+
2
1
+
3
1
+
3
⋱
{\displaystyle {\begin{aligned}\int \limits _{0}^{\infty }\!\!{\frac {e^{-n}}{1{+}n}}\,\mathrm {d} n&=\!\!\int \limits _{0}^{1}\!\!{\frac {1}{1{-}\ln n}}\,\mathrm {d} n\\&={\frac {1}{1+{\frac {1}{1+{\frac {1}{1+{\frac {2}{1+{\frac {2}{1+{\frac {3}{1+{\frac {3}{\ddots }}}}}}}}}}}}}}\end{aligned}}}
Sebelum tahun 1948[ OEIS 48]
1950–1999
Nama
Simbol
Ekspansi desimal
Rumus
Tahun
Himpunan
Tetapan Van der Pauw
α
{\displaystyle {\alpha }}
4.53236 01418 27193 80962[ OEIS 49]
π
ln
(
2
)
=
∑
n
=
0
∞
4
(
−
1
)
n
2
n
+
1
∑
n
=
1
∞
(
−
1
)
n
+
1
n
=
4
1
−
4
3
+
4
5
−
4
7
+
4
9
−
⋯
1
1
−
1
2
+
1
3
−
1
4
+
1
5
−
⋯
{\displaystyle {\frac {\pi }{\ln(2)}}={\frac {\sum \limits _{n=0}^{\infty }{\frac {4(-1)^{n}}{2n+1}}}{\sum \limits _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}}}={\frac {{\frac {4}{1}}-{\frac {4}{3}}+{\frac {4}{5}}-{\frac {4}{7}}+{\frac {4}{9}}-\cdots }{{\frac {1}{1}}-{\frac {1}{2}}+{\frac {1}{3}}-{\frac {1}{4}}+{\frac {1}{5}}-\cdots }}}
Sebelum tahun 1958[ OEIS 50]
Sudut ajaib [ 64]
θ
m
{\displaystyle {\theta _{m}}}
0.95531 66181 245092 78163[ OEIS 51]
arctan
(
2
)
=
arccos
(
1
3
)
≈
54.7356
∘
{\displaystyle \arctan \left({\sqrt {2}}\right)=\arccos \left({\sqrt {\tfrac {1}{3}}}\right)\approx \textstyle {54.7356}^{\circ }}
Sebelum tahun 1959[ 64] [ 65]
T
{\displaystyle \mathbb {T} }
Tetapan Lochs [ 66]
£
Lo
{\displaystyle {{\text{£}}_{\text{Lo}}}}
0.97027 01143 92033 92574 [ Mw 48] [ OEIS 52]
6
ln
2
ln
10
π
2
{\displaystyle {\frac {6\ln 2\ln 10}{\pi ^{2}}}}
1964
Tetapan es persegi Lieb [ 67]
W
2
D
{\displaystyle {W}_{2D}}
1.53960 07178 39002 03869 [ Mw 49] [ OEIS 53]
lim
n
→
∞
(
f
(
n
)
)
n
−
2
=
(
4
3
)
3
2
=
8
3
3
{\displaystyle \lim _{n\to \infty }(f(n))^{n^{-2}}=\left({\frac {4}{3}}\right)^{\frac {3}{2}}={\frac {8}{3{\sqrt {3}}}}}
1967
A
{\displaystyle \mathbb {A} }
Tetapan Niven [ 68]
C
{\displaystyle {C}}
1.70521 11401 05367 76428 [ Mw 50] [ OEIS 54]
1
+
∑
n
=
2
∞
(
1
−
1
ζ
(
n
)
)
{\displaystyle 1+\sum _{n=2}^{\infty }\left(1-{\frac {1}{\zeta (n)}}\right)}
1969
Tetapan Baker [ 69]
β
3
{\displaystyle \beta _{3}}
0.83564 88482 64721 05333[ OEIS 55]
∫
0
1
d
t
1
+
t
3
=
∑
n
=
0
∞
(
−
1
)
n
3
n
+
1
=
1
3
(
ln
2
+
π
3
)
{\displaystyle \int _{0}^{1}{\frac {\mathrm {d} t}{1+t^{3}}}=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{3n+1}}={\frac {1}{3}}\left(\ln 2+{\frac {\pi }{\sqrt {3}}}\right)}
Sebelum tahun 1969[ 69]
Tetapan Porter [ 70]
C
{\displaystyle {C}}
1.46707 80794 33975 47289 [ Mw 51] [ OEIS 56]
6
ln
2
π
2
(
3
ln
2
+
4
γ
−
24
π
2
ζ
′
(
2
)
−
2
)
−
1
2
{\displaystyle {\frac {6\ln 2}{\pi ^{2}}}\left(3\ln 2+4\,\gamma -{\frac {24}{\pi ^{2}}}\,\zeta '(2)-2\right)-{\frac {1}{2}}}
dimana
γ
{\displaystyle \scriptstyle \gamma }
adalah tetapan Euler–Mascheroni dengan nilai 0.5772156649... dan
ζ
′
(
2
)
{\displaystyle \scriptstyle \zeta '(2)}
adalah turunan dari
ζ
(
2
)
{\displaystyle \scriptstyle \zeta (2)}
dengan nilai –0.9375482543...
1974
Tetapan Feigenbaum (δ) [ 71]
δ
{\displaystyle {\delta }}
4.66920 16091 02990 67185 [ Mw 52] [ OEIS 57]
lim
n
→
∞
x
n
+
1
−
x
n
x
n
+
2
−
x
n
+
1
,
x
∈
(
3.8284
;
3.8495
)
{\displaystyle \lim _{n\to \infty }{\frac {x_{n+1}-x_{n}}{x_{n+2}-x_{n+1}}},\quad x\in (3.8284;\,3.8495)}
dimana
x
n
+
1
=
a
x
n
(
1
−
x
n
)
atau
x
n
+
1
=
a
sin
(
x
n
)
{\displaystyle \scriptstyle x_{n+1}=\,ax_{n}(1-x_{n})\quad {\text{atau}}\quad x_{n+1}=\,a\sin(x_{n})}
.
1975
Tetapan Chaitin [ 72]
Ω
{\displaystyle \Omega }
Secara umum mereka merupakan bilangan yang tak dapat dihitung . Tapi salah satu bilangannya 0.00787 49969 97812 3844[ Mw 53] [ OEIS 58]
∑
p
∈
P
2
−
|
p
|
{\displaystyle \sum _{p\in P}2^{-|p|}}
p
{\displaystyle p}
adalah program terhenti;
|
p
|
{\displaystyle \left|p\right|}
adalah ukuran dalam bit program Size in bits of program
p
{\displaystyle p}
; dan
P
{\displaystyle P}
adalah ranah semua program yang berhenti.
1975
T
{\displaystyle \mathbb {T} }
Tetapan Fransén–Robinson [ 73]
F
{\displaystyle {F}}
2.80777 02420 28519 36522 [ Mw 54] [ OEIS 59]
∫
0
∞
1
Γ
(
x
)
d
x
=
e
+
∫
0
∞
e
−
x
π
2
+
ln
2
x
d
x
{\displaystyle \int _{0}^{\infty }{\frac {1}{\Gamma (x)}}\,\mathrm {d} x=e+\int _{0}^{\infty }{\frac {e^{-x}}{\pi ^{2}+\ln ^{2}x}}\,\mathrm {d} x}
1978
Tetapan Robbins [ 74]
Δ
(
3
)
{\displaystyle \Delta (3)}
0.66170 71822 67176 23515 [ Mw 55] [ OEIS 60]
4
+
17
2
−
6
3
−
7
π
105
+
ln
(
1
+
2
)
5
+
2
ln
(
2
+
3
)
5
{\displaystyle {\frac {4\!+\!17{\sqrt {2}}\!-6{\sqrt {3}}\!-7\pi }{105}}\!+\!{\frac {\ln(1\!+\!{\sqrt {2}})}{5}}\!+\!{\frac {2\ln(2\!+\!{\sqrt {3}})}{5}}}
1978
Tetapan Feigenbaum (α) [ 75]
α
{\displaystyle \alpha }
2.50290 78750 95892 82228 [ Mw 52] [ OEIS 61]
lim
n
→
∞
d
n
d
n
+
1
{\displaystyle \lim _{n\to \infty }{\frac {d_{n}}{d_{n+1}}}}
1979
T
{\displaystyle \mathbb {T} }
?
Dimensi fraktal dari himpunan Cantor [ 76]
d
f
(
k
)
{\displaystyle d_{f}(k)}
0.63092 97535 71457 43709 [ Mw 56] [ OEIS 62]
lim
ε
→
0
log
N
(
ε
)
log
(
1
ε
)
=
log
2
log
3
{\displaystyle \lim _{\varepsilon \to 0}{\frac {\log N(\varepsilon )}{\log \left({\frac {1}{\varepsilon }}\right)}}={\frac {\log 2}{\log 3}}}
Sebelum tahun 1979[ OEIS 62]
T
{\displaystyle \mathbb {T} }
Tetapan perangkai [ 77] [ 78]
μ
{\displaystyle {\mu }}
1.84775 90650 22573 51225 [ Mw 57] [ OEIS 63]
2
+
2
=
lim
n
→
∞
c
n
1
/
n
{\displaystyle {\sqrt {2+{\sqrt {2}}}}\;=\lim _{n\rightarrow \infty }c_{n}^{1/n}}
sebagai sebuah akar dari polinomial
x
4
−
4
x
2
+
2
=
0
{\displaystyle x^{4}-4x^{2}+2=0}
.
1982[ 79]
A
{\displaystyle \mathbb {A} }
Tetapan konjektur Lehmer [ 80]
σ
10
{\displaystyle {\sigma _{_{10}}}}
1.17628 08182 59917 50654 [ Mw 58] [ OEIS 64]
x
10
+
x
9
−
x
7
−
x
6
−
x
5
−
x
4
−
x
3
+
x
+
1
{\displaystyle x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1}
1983?
A
{\displaystyle \mathbb {A} }
Tetapan Chebyshev [ 81] · [ 82]
λ
Ch
{\displaystyle \lambda _{\text{Ch}}}
0.59017 02995 08048 11302 [ Mw 59] [ OEIS 65]
Γ
(
1
4
)
2
4
π
3
2
=
4
(
1
4
!
)
2
π
3
2
{\displaystyle {\frac {\Gamma \left({\frac {1}{4}}\right)^{2}}{4\pi ^{\frac {3}{2}}}}={\frac {4\left({\frac {1}{4}}!\right)^{2}}{\pi ^{\frac {3}{2}}}}}
Sebelum tahun 1987[ Mw 59]
Tetapan Conway [ 83]
λ
{\displaystyle {\lambda }}
1.30357 72690 34296 39125 [ Mw 60] [ OEIS 66]
x
71
−
x
69
−
2
x
68
−
x
67
+
2
x
66
+
2
x
65
+
x
64
−
x
63
−
x
62
−
x
61
−
x
60
−
x
59
+
2
x
58
+
5
x
57
+
3
x
56
−
2
x
55
−
10
x
54
−
3
x
53
−
2
x
52
+
6
x
51
+
6
x
50
+
x
49
+
9
x
48
−
3
x
47
−
7
x
46
−
8
x
45
−
8
x
44
+
10
x
43
+
6
x
42
+
8
x
41
−
5
x
40
−
12
x
39
+
7
x
38
−
7
x
37
+
7
x
36
+
x
35
−
3
x
34
+
10
x
33
+
x
32
−
6
x
31
−
2
x
30
−
10
x
29
−
3
x
28
+
2
x
27
+
9
x
26
−
3
x
25
+
14
x
24
−
8
x
23
−
7
x
21
+
9
x
20
+
3
x
19
−
4
x
18
−
10
x
17
−
7
x
16
+
12
x
15
+
7
x
14
+
2
x
13
−
12
x
12
−
4
x
11
−
2
x
10
+
5
x
9
+
x
7
−
7
x
6
+
7
x
5
−
4
x
4
+
12
x
3
−
6
x
2
+
3
x
−
6
=
0
{\displaystyle {\begin{smallmatrix}x^{71}\quad \ -x^{69}-2x^{68}-x^{67}+2x^{66}+2x^{65}+x^{64}-x^{63}-x^{62}-x^{61}-x^{60}\\-x^{59}+2x^{58}+5x^{57}+3x^{56}-2x^{55}-10x^{54}-3x^{53}-2x^{52}+6x^{51}+6x^{50}\\+x^{49}+9x^{48}-3x^{47}-7x^{46}-8x^{45}-8x^{44}+10x^{43}+6x^{42}+8x^{41}-5x^{40}\\-12x^{39}+7x^{38}-7x^{37}+7x^{36}+x^{35}-3x^{34}+10x^{33}+x^{32}-6x^{31}-2x^{30}\\-10x^{29}-3x^{28}+2x^{27}+9x^{26}-3x^{25}+14x^{24}-8x^{23}\quad \ -7x^{21}+9x^{20}\\+3x^{19}\!-4x^{18}\!-10x^{17}\!-7x^{16}\!+12x^{15}\!+7x^{14}\!+2x^{13}\!-12x^{12}\!-4x^{11}\!-2x^{10}\\+5x^{9}+x^{7}\quad \ -7x^{6}+7x^{5}-4x^{4}+12x^{3}-6x^{2}+3x-6\ =\ 0\quad \quad \quad \end{smallmatrix}}}
1987
A
{\displaystyle \mathbb {A} }
Tetapan Prévost, tetapan Fibonacci timbal-balik [ 84]
Ψ
{\displaystyle \Psi }
3.35988 56662 43177 55317 [ Mw 61] [ OEIS 67]
∑
n
=
1
∞
1
F
n
=
1
1
+
1
1
+
1
2
+
1
3
+
1
5
+
1
8
+
1
13
+
⋯
{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{F_{n}}}={\frac {1}{1}}+{\frac {1}{1}}+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{5}}+{\frac {1}{8}}+{\frac {1}{13}}+\cdots }
dimana
F
n
{\displaystyle F_{n}}
adalah deret Fibonacci .
Sebelum tahun 1988[ OEIS 67]
R
∖
Q
{\displaystyle \mathbb {R} \setminus \mathbb {Q} }
Tetapan Brun 2 = Σ balikan bilangan prima kembar [ 85]
B
2
{\displaystyle {B}_{\,2}}
1.90216 05831 04 [ Mw 62] [ OEIS 68]
∑
(
1
p
+
1
p
+
2
)
p
,
p
+
2
:
prima
=
(
1
3
+
1
5
)
+
(
1
5
+
1
7
)
+
(
1
11
+
1
13
)
+
⋯
{\displaystyle {\underset {p,\,p+2:{\text{ prima}}}{\sum \left({\frac {1}{p}}+{\frac {1}{p+2}}\right)}}=\left({\frac {1}{3}}\!+\!{\frac {1}{5}}\right)+\left({\frac {1}{5}}\!+\!{\frac {1}{7}}\right)+\left({\frac {1}{11}}\!+\!{\frac {1}{13}}\right)+\cdots }
1989[ OEIS 68]
Tetapan Hafner–Sarnak–McCurley (1) [ 86]
σ
{\displaystyle {\sigma }}
0.35323 63718 54995 98454 [ Mw 63] [ OEIS 69]
∏
k
=
1
∞
{
1
−
[
1
−
∏
j
=
1
n
(
1
−
p
k
−
j
)
]
2
p
k
:
prima
}
{\displaystyle \prod _{k=1}^{\infty }\left\{1-[1-\prod _{j=1}^{n}{\underset {p_{k}:{\text{ prima}}}{(1-p_{k}^{-j})]^{2}}}\right\}}
1993
Dimensi fraktal dari pengepakan Apollo mengenai lingkaran [ 87] [ 88]
ε
{\displaystyle \varepsilon }
1.30568 6729 oleh Thomas & Dhar 1.30568 8 oleh McMullen [ Mw 64] [ OEIS 70]
1994 1998
Tetapan Backhouse [ 89]
B
{\displaystyle {B}}
1.45607 49485 82689 67139 [ Mw 65] [ OEIS 71]
lim
k
→
∞
|
q
k
+
1
q
k
|
{\displaystyle \lim _{k\to \infty }\left|{\frac {q_{k+1}}{q_{k}}}\right\vert }
dimana
Q
(
x
)
=
1
P
(
x
)
=
∑
k
=
1
∞
q
k
x
k
{\displaystyle Q(x)={\frac {1}{P(x)}}=\!\sum _{k=1}^{\infty }q_{k}x^{k}}
dan
P
(
x
)
=
∑
k
=
1
∞
p
k
x
k
p
k
prima
=
1
+
2
x
+
3
x
2
+
5
x
3
+
⋯
{\displaystyle P(x)=\sum _{k=1}^{\infty }{\underset {p_{k}{\text{ prima}}}{p_{k}x^{k}}}=1+2x+3x^{2}+5x^{3}+\cdots }
1995
Tetapan Viswanath [ 90]
C
Vi
{\displaystyle {C}_{\text{Vi}}}
1.13198 82487 943 [ Mw 66] [ OEIS 72]
lim
n
→
∞
|
a
n
|
1
n
{\displaystyle \lim _{n\to \infty }|a_{n}|^{\frac {1}{n}}}
dimana
a
n
{\displaystyle a_{n}}
adalah barisan Fibonacci
1997
T
{\displaystyle \mathbb {T} }
?
Tetapan waktu [ 91]
τ
{\displaystyle {\tau }}
0.63212 05588 28557 67840 [ Mw 67] [ OEIS 73]
lim
n
→
∞
1
−
!
n
n
!
=
lim
n
→
∞
P
(
n
)
=
∫
0
1
e
−
x
d
x
=
1
−
1
e
=
∑
n
=
1
∞
(
−
1
)
n
+
1
n
!
=
1
1
!
−
1
2
!
+
1
3
!
−
1
4
!
+
1
5
!
−
1
6
!
+
⋯
{\displaystyle {\begin{aligned}\lim _{n\to \infty }1-{\frac {!n}{n!}}&=\lim _{n\to \infty }P(n)\\&=\int _{0}^{1}e^{-x}dx\\&=1{-}{\frac {1}{e}}\\&=\sum \limits _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n!}}={\frac {1}{1!}}{-}{\frac {1}{2!}}{+}{\frac {1}{3!}}{-}{\frac {1}{4!}}{+}{\frac {1}{5!}}{-}{\frac {1}{6!}}{+}\cdots \end{aligned}}}
Sebelum tahun 1997[ 91]
T
{\displaystyle \mathbb {T} }
Tetapan Komornik–Loreti [ 92]
q
{\displaystyle {q}}
1.78723 16501 82965 93301 [ Mw 68] [ OEIS 74]
1
=
∑
n
=
1
∞
t
k
q
k
{\displaystyle 1=\!\sum _{n=1}^{\infty }{\frac {t_{k}}{q^{k}}}}
akar real dari
∏
n
=
0
∞
(
1
−
1
q
2
n
)
+
q
−
2
q
−
1
=
0
{\displaystyle \prod _{n=0}^{\infty }\!\left(\!1{-}{\frac {1}{q^{2^{n}}}}\!\right)\!{+}{\frac {q{-}2}{q{-}1}}=0}
, dimana
t
k
{\displaystyle t_{k}}
adalah barisan Thue–Morse .
1998
T
{\displaystyle \mathbb {T} }
Barisan lipatan kertas beraturan [ 93] [ 94]
P
f
{\displaystyle {P_{f}}}
0.85073 61882 01867 26036 [ Mw 69] [ OEIS 75]
∑
n
=
0
∞
8
2
n
2
2
n
+
2
−
1
=
∑
n
=
0
∞
1
2
2
n
1
−
1
2
2
n
+
2
{\displaystyle \sum _{n=0}^{\infty }{\frac {8^{2^{n}}}{2^{2^{n+2}}-1}}=\sum _{n=0}^{\infty }{\cfrac {\tfrac {1}{2^{2^{n}}}}{1-{\tfrac {1}{2^{2^{n+2}}}}}}}
Sebelum tahun 1998[ 94]
Tetapan Artin [ 95]
C
Artin
{\displaystyle {C}_{\text{Artin}}}
0.37395 58136 19202 28805 [ Mw 70] [ OEIS 76]
∏
n
=
1
∞
(
1
−
1
p
n
(
p
n
−
1
)
)
{\displaystyle \prod _{n=1}^{\infty }\left(1-{\frac {1}{p_{n}(p_{n}-1)}}\right)}
dimana
p
n
{\displaystyle p_{n}}
adalah prima.
1999
Tetapan MRB [ 96] [ 97] [ 98]
C
MRB
{\displaystyle C_{\text{MRB}}}
0.18785 96424 62067 12024 [ Mw 71] [ Ow 1] [ OEIS 77]
∑
n
=
1
∞
(
−
1
)
n
(
n
1
/
n
−
1
)
=
−
1
1
+
2
2
−
3
3
+
⋯
{\displaystyle \sum _{n=1}^{\infty }(-1)^{n}(n^{1/n}-1)=-{\sqrt[{1}]{1}}+{\sqrt[{2}]{2}}-{\sqrt[{3}]{3}}+\cdots }
1999
Tetapan perulangan kuadrat Somos [ 99]
σ
{\displaystyle {\sigma }}
1.66168 79496 33594 12129 [ Mw 72] [ OEIS 78]
∏
n
=
1
∞
n
1
/
2
n
=
1
2
3
⋯
=
1
1
/
2
2
1
/
4
3
1
/
8
⋯
{\displaystyle \prod _{n=1}^{\infty }n^{{1/2}^{n}}={\sqrt {1{\sqrt {2{\sqrt {3\cdots }}}}}}=1^{1/2}\;2^{1/4}\;3^{1/8}\cdots }
1999[ Mw 72]
T
{\displaystyle \mathbb {T} }
?
2000 hingga seterusnya
Nama
Simbol
Ekspansi desimal
Rumus
Tahun
Himpunan
Tetapan Foias (α) [ 100]
F
α
{\displaystyle F_{\alpha }}
1.18745 23511 26501 05459 [ Mw 73] [ OEIS 79]
x
n
+
1
=
(
1
+
1
x
n
)
n
untuk
n
=
1
,
2
,
3
,
…
{\displaystyle x_{n+1}=\left(1+{\frac {1}{x_{n}}}\right)^{n}{\text{ untuk }}n=1,2,3,\ldots }
Tetapan Foias merupakan bilangan real tunggal sehingga jika
x
1
=
α
{\displaystyle x_{1}=\alpha }
maka barisan divergen menuju
∞
{\displaystyle \infty }
. Ketika
x
1
=
α
{\displaystyle x_{1}=\alpha }
,
lim
n
→
∞
x
n
ln
n
n
=
1
{\displaystyle \,\lim _{n\to \infty }x_{n}{\frac {\ln n}{n}}=1}
.
2000
Tetapan Foias (β)
F
β
{\displaystyle F_{\beta }}
2.29316 62874 11861 03150 [ Mw 73] [ OEIS 80]
x
x
+
1
=
(
x
+
1
)
x
{\displaystyle x^{x+1}=(x+1)^{x}}
2000
Rumus Raabe [ 101]
ζ
′
(
0
)
{\displaystyle {\zeta '(0)}}
0.91893 85332 04672 74178 [ Mw 74] [ OEIS 81]
∫
a
a
+
1
log
Γ
(
t
)
d
t
=
1
2
log
2
π
+
a
log
a
−
a
,
a
≥
0
{\displaystyle \int \limits _{a}^{a+1}\log \Gamma (t)\,\mathrm {d} t={\tfrac {1}{2}}\log 2\pi +a\log a-a,\quad a\geq 0}
Sebelum tahun 2011[ 101]
Tetapan Kepler–Bouwkamp [ 102]
ρ
{\displaystyle {\rho }}
0.11494 20448 53296 20070 [ Mw 75] [ OEIS 82]
∏
n
=
3
∞
cos
(
π
n
)
=
cos
(
π
3
)
cos
(
π
4
)
cos
(
π
5
)
.
.
.
{\displaystyle \prod _{n=3}^{\infty }\cos \left({\frac {\pi }{n}}\right)=\cos \left({\frac {\pi }{3}}\right)\cos \left({\frac {\pi }{4}}\right)\cos \left({\frac {\pi }{5}}\right)...}
Sebelum tahun 2013[ 102]
Tetapan Prouhet–Thue–Morse [ 103]
τ
{\displaystyle \tau }
0.41245 40336 40107 59778 [ Mw 76] [ OEIS 83]
∑
n
=
0
∞
t
n
2
n
+
1
{\displaystyle \sum _{n=0}^{\infty }{\frac {t_{n}}{2^{n+1}}}}
dimana
t
n
{\displaystyle {t_{n}}}
merupakan barisan Thue–Morse dan
τ
(
x
)
=
∑
n
=
0
∞
(
−
1
)
t
n
x
n
=
∏
n
=
0
∞
(
1
−
x
2
n
)
{\displaystyle \tau (x)=\sum _{n=0}^{\infty }(-1)^{t_{n}}\,x^{n}=\prod _{n=0}^{\infty }(1-x^{2^{n}})}
Sebelum tahun 2014[ 103]
T
{\displaystyle \mathbb {T} }
Tetapan Heath–Brown–Moroz [ 104]
C
HBM
{\displaystyle {C}_{\text{HBM}}}
0.00131 76411 54853 17810 [ Mw 77] [ OEIS 84]
∏
n
=
1
∞
(
1
−
1
p
n
)
7
(
1
+
7
p
n
+
1
p
n
2
)
p
n
:
prima
{\displaystyle {\underset {p_{n}:\,{\text{prima}}}{\prod _{n=1}^{\infty }\left(1-{\frac {1}{p_{n}}}\right)^{7}\left(1+{\frac {7p_{n}+1}{p_{n}^{2}}}\right)}}}
Sebelum tahun 2002[ 104]
T
{\displaystyle \mathbb {T} }
?
Tetapan Lebesgue [ 105]
C
1
{\displaystyle {C_{1}}}
0.98943 12738 31146 95174 [ Mw 78] [ OEIS 85]
lim
n
→
∞
(
L
n
−
4
π
2
ln
(
2
n
+
1
)
)
=
4
π
2
(
∑
k
=
1
∞
2
ln
k
4
k
2
−
1
−
Γ
′
(
1
2
)
Γ
(
1
2
)
)
{\displaystyle \lim _{n\to \infty }\!\!\left(\!{L_{n}{-}{\frac {4}{\pi ^{2}}}\ln(2n{+}1)}\!\!\right)\!{=}{\frac {4}{\pi ^{2}}}\!\left({\sum _{k=1}^{\infty }\!{\frac {2\ln k}{4k^{2}{-}1}}}{-}{\frac {\Gamma '({\tfrac {1}{2}})}{\Gamma ({\tfrac {1}{2}})}}\!\!\right)}
Sebelum tahun 2002[ 105]
Tetapan Bois–Romand kedua (es ) [ 106]
C
2
{\displaystyle {C_{2}}}
0.19452 80494 65325 11361 [ Mw 79] [ OEIS 86]
e
2
−
7
2
=
∫
0
∞
|
d
d
t
(
sin
t
t
)
n
|
d
t
−
1
{\displaystyle {\frac {e^{2}-7}{2}}=\int _{0}^{\infty }\left|{{\frac {\mathrm {d} }{\mathrm {d} t}}\left({\frac {\sin t}{t}}\right)^{n}}\right|\,\mathrm {d} t-1}
Sebelum tahun 2003[ 106]
T
{\displaystyle \mathbb {T} }
Tetapan Stephens [ 107]
C
S
{\displaystyle C_{S}}
0.57595 99688 92945 43964 [ Mw 80] [ OEIS 87]
∏
n
=
1
∞
(
1
−
p
p
3
−
1
)
{\displaystyle \prod _{n=1}^{\infty }\left(1-{\frac {p}{p^{3}-1}}\right)}
Sebelum tahun 2005[ 107]
T
{\displaystyle \mathbb {T} }
?
Tetapan Taniguchi [ 107]
C
T
{\displaystyle C_{T}}
0.67823 44919 17391 97803 [ Mw 81] [ OEIS 88]
∏
n
=
1
∞
(
1
−
3
p
n
3
+
2
p
n
4
+
1
p
n
5
−
1
p
n
6
)
{\displaystyle \prod _{n=1}^{\infty }\left(1-{\frac {3}{{p_{n}}^{3}}}+{\frac {2}{{p_{n}}^{4}}}+{\frac {1}{{p_{n}}^{5}}}-{\frac {1}{{p_{n}}^{6}}}\right)}
dimana
p
n
{\displaystyle p_{n}}
adalah prima.
Sebelum tahun2005[ 107]
T
{\displaystyle \mathbb {T} }
?
Tetapan Copeland–Erdős [ 108]
C
C
E
{\displaystyle {{\mathcal {C}}_{CE}}}
0.23571 11317 19232 93137 [ Mw 82] [ OEIS 89]
∑
n
=
1
∞
p
n
10
n
+
∑
k
=
1
n
⌊
log
10
p
k
⌋
{\displaystyle \sum _{n=1}^{\infty }{\frac {p_{n}}{10^{n+\sum \limits _{k=1}^{n}\lfloor \log _{10}{p_{k}}\rfloor }}}}
Sebelum tahun 2012[ 108]
R
∖
Q
{\displaystyle \mathbb {R} \setminus \mathbb {Q} }
Dimensi Hausdorff , segitiga Sierpinski [ 109]
log
2
3
{\displaystyle {\log _{2}3}}
1.58496 25007 21156 18145 [ Mw 83] [ OEIS 90]
log
3
log
2
=
∑
∞
n
=
0
∞
1
2
2
n
+
1
(
2
n
+
1
)
∑
n
=
0
∞
1
3
2
n
+
1
(
2
n
+
1
)
=
1
2
+
1
24
+
1
160
+
⋯
1
3
+
1
81
+
1
1215
+
⋯
{\displaystyle {\frac {\log 3}{\log 2}}={\frac {{\underset {n=0}{\overset {\infty }{\sum }}}^{\infty }{\frac {1}{2^{2n+1}(2n+1)}}}{\sum _{n=0}^{\infty }{\frac {1}{3^{2n+1}(2n+1)}}}}={\frac {{\frac {1}{2}}+{\frac {1}{24}}+{\frac {1}{160}}+\cdots }{{\frac {1}{3}}+{\frac {1}{81}}+{\frac {1}{1215}}+\cdots }}}
Sebelum tahun 2002[ 109]
T
{\displaystyle \mathbb {T} }
Tetapan Landau–Ramanujan [ 110]
K
{\displaystyle K}
0.76422 36535 89220 66299 [ Mw 84] [ OEIS 91]
1
2
∏
p
≡
3
mod
4
(
1
−
1
p
2
)
−
1
2
p
:
prima
=
π
4
∏
p
≡
1
mod
4
(
1
−
1
p
2
)
1
2
p
:
prima
{\displaystyle {\frac {1}{\sqrt {2}}}\prod _{p\equiv 3\!\!\!\!\!\mod \!4}\!\!{\underset {\!\!\!\!\!\!\!\!p:{\text{ prima}}}{\left(1-{\frac {1}{p^{2}}}\right)^{-{\frac {1}{2}}}}}\!\!={\frac {\pi }{4}}\prod _{p\equiv 1\!\!\!\!\!\mod \!4}\!\!{\underset {\!\!\!\!p:{\text{ prima}}}{\left(1-{\frac {1}{p^{2}}}\right)^{\frac {1}{2}}}}}
Sebelum tahun 2005[ 110]
T
{\displaystyle \mathbb {T} }
?
Tetapan Brun 4 = Σ balikkan bilangan prima kembar empat [ 111]
B
4
{\displaystyle {B}_{\,4}}
0.87058 83799 75 [ Mw 62] [ OEIS 92]
∑
(
1
p
+
1
p
+
2
+
1
p
+
6
+
1
p
+
8
)
p
,
p
+
2
,
p
+
6
,
p
+
8
:
prima
{\displaystyle \sum \left({\frac {1}{p}}+{\frac {1}{p+2}}+{\frac {1}{p+6}}+{\frac {1}{p+8}}\right)\scriptstyle \quad {p,\;p+2,\;p+6,\;p+8:{\text{ prima}}}}
(
1
5
+
1
7
+
1
11
+
1
13
)
+
(
1
11
+
1
13
+
1
17
+
1
19
)
+
…
{\displaystyle \left({\frac {1}{5}}+{\frac {1}{7}}+{\frac {1}{11}}+{\frac {1}{13}}\right)+\left({\frac {1}{11}}+{\frac {1}{13}}+{\frac {1}{17}}+{\frac {1}{19}}\right)+\dots }
Sebelum tahun 2002[ 111]
Radikal tersarang Ramanujan [ 112]
R
5
{\displaystyle R_{5}}
2.74723 82749 32304 33305
5
+
5
+
5
−
5
+
5
+
5
+
5
−
⋯
=
2
+
5
+
15
−
6
5
2
{\displaystyle {\sqrt {5+{\sqrt {5+{\sqrt {5-{\sqrt {5+{\sqrt {5+{\sqrt {5+{\sqrt {5-\cdots }}}}}}}}}}}}}}\;={\frac {2+{\sqrt {5}}+{\sqrt {15-6{\sqrt {5}}}}}{2}}}
Sebelum tahun 2001[ 112]
A
{\displaystyle \mathbb {A} }
Tetapan lainnya
Lihat pula
Catatan
^ 1 dapat diberikan sebagai sebuah gagasan primitf dalam Aritmetika Peano . Secara bergantian, 0 dapat menjadi sebuah gagasn primitif dalam aritmetika Peano dan and 1 didefinisikan sebagai penerus untuk 0. Artikel ini menggunakan definisi sebelumnya yang berhubungan dengan pendidikan dan kesederhaan berturut-turut.
^ Keduanya
i
{\displaystyle i}
dan
−
i
{\displaystyle -i}
merupakan akar-akar persamaan ini, melalui baik bukan akarnya benar-benar "positif" maupun lebih fundamental daripada lainnya karena mereka setara secara aljabar. Perbedaan antara tanda
i
{\displaystyle i}
dan
−
i
{\displaystyle -i}
ada dalam beberapa hal yang sembarang, tetapi sebuah alat notasi yang berguna. Lihat satuan khayal untuk informasi lebih lanjut.
^ Juga dapat didefinisikan oleh deret takhingga
∑
n
=
0
∞
1
n
!
=
1
0
!
+
1
1
+
1
2
!
+
1
3
!
+
⋯
{\displaystyle \sum _{n=0}^{\infty }{\frac {1}{n!}}={\frac {1}{0!}}+{\frac {1}{1}}+{\frac {1}{2!}}+{\frac {1}{3!}}+\cdots }
Referensi
^ a b c d "Compendium of Mathematical Symbols" . Math Vault (dalam bahasa Inggris). 2020-03-01. Diakses tanggal 2020-08-08 .
^ Weisstein, Eric W. "Constant" . mathworld.wolfram.com (dalam bahasa Inggris). Diakses tanggal 2020-08-08 .
^ Arndt & Haenel 2006 , hlm. 167
^ Calvin C Clawson (2001). Mathematical sorcery: revealing the secrets of numbers . hlm. IV. ISBN 978 0 7382 0496-3 . [pranala nonaktif permanen ]
^ Fowler and Robson, p. 368.
Photograph, illustration, and description of the root(2) tablet from the Yale Babylonian Collection Diarsipkan 2012-08-13 di Wayback Machine .
High resolution photographs, descriptions, and analysis of the root(2) tablet (YBC 7289) from the Yale Babylonian Collection
^ Vijaya AV (2007). Figuring Out Mathematics . Dorling Kindcrsley (India) Pvt. Lid. hlm. 15. ISBN 978-81-317-0359-5 .
^ P A J Lewis (2008). Essential Mathematics 9 . Ratna Sagar. hlm. 24. ISBN 9788183323673 .
^ Timothy Gowers; June Barrow-Green; Imre Leade (2007). The Princeton Companion to Mathematics . Princeton University Press. hlm. 316. ISBN 978-0-691-11880-2 .
^ Kim Plofker (2009), Mathematics in India , Princeton University Press, ISBN 978-0-691-12067-6 , pp. 54–56.
^ Plutarch. "718ef". Quaestiones convivales VIII.ii . Diarsipkan dari versi asli tanggal 2019-07-28. Diakses tanggal 2021-03-24 . And therefore Plato himself dislikes Eudoxus, Archytas, and Menaechmus for endeavoring to bring down the doubling the cube to mechanical operations
^ Keith J. Devlin (1999). Mathematics: The New Golden Age . Columbia University Press. hlm. 66. ISBN 978-0-231-11638-1 .
^ E.Kasner y J.Newman. (2007). Mathematics and the Imagination . Conaculta. hlm. 77. ISBN 978-968-5374-20-0 .
^ O'Connor, J J; Robertson, E F. "The number e " . MacTutor History of Mathematics.
^ Annie Cuyt ; Vigdis Brevik Petersen; Brigitte Verdonk; Haakon Waadeland; William B. Jones (2008). Handbook of Continued Fractions for Special Functions . Springer. hlm. 182. ISBN 978-1-4020-6948-2 .
^ Cajori, Florian (1991). A History of Mathematics (edisi ke-5th). AMS Bookstore. hlm. 152. ISBN 0-8218-2102-4 .
^ O'Connor, J. J.; Robertson, E. F. (September 2001). "The number e" . The MacTutor History of Mathematics archive. Diakses tanggal 2009-02-02 .
^ William Dunham (2005). The Calculus Gallery: Masterpieces from Newton to Lebesgue . Princeton University Press. hlm. 51. ISBN 978-0-691-09565-3 .
^ Jean Jacquelin (2010). SOPHOMORE'S DREAM FUNCTION .
^ J. Coates; Martin J. Taylor (1991). L-Functions and Arithmetic . Cambridge University Press. hlm. 333. ISBN 978-0-521-38619-7 .
^ "Greek/Hebrew/Latin-based Symbols in Mathematics" . Math Vault (dalam bahasa Inggris). 2020-03-20. Diakses tanggal 2020-08-08 .
^ Robert Baillie (2013). "Summing The Curious Series of Kempner and Irwin". arΧiv :0806.4410 [math.CA].
^ Leonhard Euler (1749). Consideratio quarumdam serierum, quae singularibus proprietatibus sunt praeditae . hlm. 108.
^ Howard Curtis (2014). Orbital Mechanics for Engineering Students . Elsevier. hlm. 159. ISBN 978-0-08-097747-8 .
^ Keith B. Oldham; Jan C. Myland; Jerome Spanier (2009). An Atlas of Functions: With Equator, the Atlas Function Calculator . Springer. hlm. 15. ISBN 978-0-387-48806-6 .
^ Nielsen, Mikkel Slot. (July 2016). Undergraduate convexity : problems and solutions . hlm. 162. ISBN 9789813146211 . OCLC 951172848 .
^ Johann Georg Soldner (1809). Théorie et tables d'une nouvelle fonction transcendante (dalam bahasa Prancis). J. Lindauer, München. hlm. 42 .
^ Lorenzo Mascheroni (1792). Adnotationes ad calculum integralem Euleri (dalam bahasa Latin). Petrus Galeatius, Ticini. hlm. 17 .
^ Steven Finch (2014). Errata and Addenda to Mathematical Constants (PDF) . Harvard.edu. Diarsipkan dari versi asli (PDF) tanggal 2016-03-16. Diakses tanggal 2013-12-17 .
^ Calvin C. Clawson (2003). Mathematical Traveler: Exploring the Grand History of Numbers . Perseus. hlm. 187. ISBN 978-0-7382-0835-0 . [pranala nonaktif permanen ]
^ L. J. Lloyd James Peter Kilford (2008). Modular Forms: A Classical and Computational Introduction . Imperial College Press. hlm. 107. ISBN 978-1-84816-213-6 .
^ Henri Cohen (2000). Number Theory: Volume II: Analytic and Modern Tools . Springer. hlm. 127. ISBN 978-0-387-49893-5 .
^ H. M. Srivastava; Choi Junesang (2001). Series Associated With the Zeta and Related Functions . Kluwer Academic Publishers. hlm. 30. ISBN 978-0-7923-7054-3 .
^ E. Catalan (1864). Mémoire sur la transformation des séries, et sur quelques intégrales définies, Comptes rendus hebdomadaires des séances de l'Académie des sciences 59 . Kluwer Academic éditeurs. hlm. 618.
^ James Stewart (2010). Single Variable Calculus: Concepts and Contexts . Brooks/Cole. hlm. 314. ISBN 978-0-495-55972-6 .
^ Julian Havil (2003). Gamma: Exploring Euler's Constant . Princeton University Press. hlm. 64. ISBN 9780691141336 .
^ Eric W. Weisstein (2003). CRC Concise Encyclopedia of Mathematics, Second Edition . CRC Press. hlm. 151. ISBN 978-1-58488-347-0 .
^ Holger Hermanns; Roberto Segala (2000). Process Algebra and Probabilistic Methods . Springer-Verlag. hlm. 270. ISBN 978-3-540-67695-9 .
^ Yann Bugeaud (2004). Series representations for some mathematical constants . hlm. 72. ISBN 978-0-521-82329-6 .
^ Steven Finch (2014). Errata and Addenda to Mathematical Constants (PDF) . Harvard.edu. hlm. 59. Diarsipkan dari versi asli (PDF) tanggal 2016-03-16. Diakses tanggal 2013-12-17 .
^ Osborne, George Abbott (1891). An Elementary Treatise on the Differential and Integral Calculus . Leach, Shewell, and Sanborn. hlm. 250 .
^ Annie Cuyt; Vigdis Brevik Petersen; Brigitte Verdonk; Haakon Waadelantl; William B. Jones. (2008). Handbook of Continued Fractions for Special Functions . Springer. hlm. 188. ISBN 978-1-4020-6948-2 .
^ See Jensen 1895 .
^ David Wells (1997). The Penguin Dictionary of Curious and Interesting Numbers . Penguin Books Ltd. hlm. 4. ISBN 9780141929408 .
^ Tijdeman, Robert (1976). "On the Gel'fond–Baker method and its applications". Dalam Felix E. Browder . Mathematical Developments Arising from Hilbert Problems . Proceedings of Symposia in Pure Mathematics . XXVIII.1. American Mathematical Society . hlm. 241–268. ISBN 0-8218-1428-1 . Zbl 0341.10026 .
^ Helmut Brass; Knut Petras (2010). Quadrature Theory: The Theory of Numerical Integration on a Compact Interval . AMS. hlm. 274. ISBN 978-0-8218-5361-0 .
^ Ángulo áureo .
^ Eric W. Weisstein (2002). CRC Concise Encyclopedia of Mathematics, Second Edition . CRC Press. hlm. 1356. ISBN 9781420035223 .
^ Mauro Fiorentini. Nielsen – Ramanujan (costanti di) .
^ Robert P. Munafo (2012). Pixel Counting .
^ Steven Finch. Volumes of Hyperbolic 3-Manifolds (PDF) . Harvard University. Diarsipkan dari versi asli (PDF) tanggal 2015-09-19.
^ Lloyd N. Trefethen (2013). Approximation Theory and Approximation Practice . SIAM. hlm. 211. ISBN 978-1-611972-39-9 .
^ R. M. ABRAROV AND S. M. ABRAROV (2011). "PROPERTIES AND APPLICATIONS OF THE PRIME DETECTING FUNCTION". arΧiv :1109.6557 [math.GM].
^ Ian Stewart (1996). Professor Stewart's Cabinet of Mathematical Curiosities . Birkhäuser Verlag. ISBN 978-1-84765-128-0 .
^ Eric W. Weisstein (2003). CRC Concise Encyclopedia of Mathematics, Second Edition . CRC Press. hlm. 1688. ISBN 978-1-58488-347-0 .
^ Eric W. Weisstein (2002). CRC Concise Encyclopedia of Mathematics . Crc Press. hlm. 1212. ISBN 9781420035223 .
^ ECKFORD COHEN (1962). SOME ASYMPTOTIC FORMULAS IN THE THEORY OF NUMBERS (PDF) . University of Tennessee. hlm. 220.
^ Michael J. Dinneen; Bakhadyr Khoussainov; Prof. Andre Nies (2012). Computation, Physics and Beyond . Springer. hlm. 110. ISBN 978-3-642-27653-8 .
^ David Cohen (2006). Precalculus: With Unit Circle Trigonometry . Thomson Learning Inc. hlm. 328. ISBN 978-0-534-40230-3 .
^ Julian Havil (2003). Gamma: Exploring Euler's Constant . Princeton University Press. hlm. 161. ISBN 9780691141336 .
^ Aleksandr I͡Akovlevich Khinchin (1997). Continued Fractions . Courier Dover Publications. hlm. 66. ISBN 978-0-486-69630-0 .
^ Marek Wolf (2018). "Two arguments that the nontrivial zeros of the Riemann zeta function are irrational". Computational Methods in Science and Technology . 24 (4): 215–220. arXiv :1002.4171 . doi :10.12921/cmst.2018.0000049 .
^ Laith Saadi (2004). Stealth Ciphers . Trafford Publishing. hlm. 160. ISBN 978-1-4120-2409-9 . [pranala nonaktif permanen ]
^ Annie Cuyt; Viadis Brevik Petersen; Brigitte Verdonk; William B. Jones (2008). Handbook of continued fractions for special functions . Springer Science. hlm. 190. ISBN 978-1-4020-6948-2 .
^ a b Andras Bezdek (2003). Discrete Geometry . Marcel Dekkcr, Inc. hlm. 150. ISBN 978-0-8247-0968-6 .
^ Lowe, I. J. (1959-04-01). "Free Induction Decays of Rotating Solids" . Physical Review Letters (dalam bahasa Inggris). 2 (7): 285–287. doi :10.1103/PhysRevLett.2.285 . ISSN 0031-9007 .
^ Steven Finch (2007). Continued Fraction Transformation (PDF) . Harvard University. hlm. 7. Diarsipkan dari versi asli (PDF) tanggal 2016-04-19. Diakses tanggal 2015-02-28 .
^ Robin Whitty. Lieb's Square Ice Theorem (PDF) .
^ Ivan Niven. Averages of exponents in factoring integers (PDF) .
^ a b Jean-Pierre Serre (1969–1970). Travaux de Baker (PDF) . NUMDAM, Séminaire N. Bourbaki. hlm. 74.
^ Michel A. Théra (2002). Constructive, Experimental, and Nonlinear Analysis . CMS-AMS. hlm. 77. ISBN 978-0-8218-2167-1 .
^ Kathleen T. Alligood (1996). Chaos: An Introduction to Dynamical Systems . Springer. ISBN 978-0-387-94677-1 .
^ David Darling (2004). The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes . Wiley & Sons inc. hlm. 63. ISBN 978-0-471-27047-8 .
^ Dusko Letic; Nenad Cakic; Branko Davidovic; Ivana Berkovic. Orthogonal and diagonal dimension fluxes of hyperspherical function (PDF) . Springer.
^ Steven R. Finch (2003). Mathematical Constants . Cambridge University Press. hlm. 479 . ISBN 978-3-540-67695-9 . Schmutz.
^ K. T. Chau; Zheng Wang (201). Chaos in Electric Drive Systems: Analysis, Control and Application . John Wiley & Son. hlm. 7. ISBN 978-0-470-82633-1 .
^ Paul Manneville (2010). Instabilities, Chaos and Turbulence . Imperial College Press. hlm. 176. ISBN 978-1-84816-392-8 .
^ Mireille Bousquet-Mélou . Two-dimensional self-avoiding walks (PDF) . CNRS, LaBRI, Bordeaux, France.
^ Hugo Duminil-Copin; Stanislav Smirnov (2011). The connective constant of the honeycomb lattice √ (2 + √ 2) (PDF) . Université de Geneve.
^ B. Nienhuis (1982). "Exact critical point and critical exponents of O(n ) models in two dimensions". Phys. Rev. Lett . 49 (15): 1062–1065. Bibcode :1982PhRvL..49.1062N . doi :10.1103/PhysRevLett.49.1062 .
^ Pei-Chu Hu,Chung-Chun (2008). Distribution Theory of Algebraic Numbers . Hong Kong University. hlm. 246. ISBN 978-3-11-020536-7 .
^ Steven Finch (2014). Electrical Capacitance (PDF) . Harvard.edu. hlm. 1. Diarsipkan dari versi asli (PDF) tanggal 2016-04-19. Diakses tanggal 2015-10-12 .
^ Thomas Ransford. Computation of Logarithmic Capacity (PDF) . Université Laval, Quebec (QC), Canada. hlm. 557. [pranala nonaktif permanen ]
^ Facts On File, Incorporated (1997). Mathematics Frontiers . hlm. 46. ISBN 978-0-8160-5427-5 .
^ Gérard P. Michon (2005). Numerical Constants . Numericana.
^ Thomas Koshy (2007). Elementary Number Theory with Applications . Elsevier. hlm. 119. ISBN 978-0-12-372-487-8 .
^ Steven R. Finch (2003). Mathematical Constants . hlm. 110. ISBN 978-3-540-67695-9 .
^ Benoit Mandelbrot (2004). Fractals and Chaos: The Mandelbrot Set and Beyond . ISBN 978-1-4419-1897-0 .
^ Curtis T. McMullen (1997). Hausdorff dimension and conformal dynamics III: Computation of dimension (PDF) .
^ Eric W. Weisstein (2003). CRC Concise Encyclopedia of Mathematics, Second Edition . CRC Press. hlm. 151. ISBN 978-1-58488-347-0 .
^ DIVAKAR VISWANATH (1999). RANDOM FIBONACCI SEQUENCES AND THE NUMBER 1.13198824... (PDF) . MATHEMATICS OF COMPUTATION.
^ a b Kunihiko Kaneko; Ichiro Tsuda (1997). Complex Systems: Chaos and Beyond . hlm. 211. ISBN 978-3-540-67202-9 .
^ Christoph Lanz. k-Automatic Reals (PDF) . Technischen Universität Wien.
^ Francisco J. Aragón Artacho; David H. Baileyy; Jonathan M. Borweinz; Peter B. Borwein (2012). Tools for visualizing real numbers (PDF) . hlm. 33. Diarsipkan dari versi asli (PDF) tanggal 2017-02-20. Diakses tanggal 2021-03-24 .
^ a b Papierfalten (PDF) . 1998.
^ Paulo Ribenboim (2000). My Numbers, My Friends: Popular Lectures on Number Theory . Springer. hlm. 66. ISBN 978-0-387-98911-2 .
^ Richard E. Crandall (2012). Unified algorithms for polylogarithm, L-series, and zeta variants (PDF) . perfscipress.com. Diarsipkan dari versi asli (PDF) tanggal 2013-04-30.
^ RICHARD J. MATHAR (2010). "NUMERICAL EVALUATION OF THE OSCILLATORY INTEGRAL OVER exp(I pi x)x^1/x BETWEEN 1 AND INFINITY". arΧiv :0912.3844 [math.CA].
^ M.R.Burns (1999). Root constant . Marvin Ray Burns.
^ Jesus Guillera; Jonathan Sondow (2008). "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent". The Ramanujan Journal . 16 (3): 247–270. arXiv :math/0506319 . doi :10.1007/s11139-007-9102-0 .
^ Andrei Vernescu (2007). Gazeta Matemetica Seria a revista de cultur Matemetica Anul XXV(CIV)Nr. 1, Constante de tip Euler generalízate (PDF) . hlm. 14.
^ a b István Mezö (2011). "On the integral of the fourth Jacobi theta function". arΧiv :1106.1042 [math.NT].
^ a b Richard J. Mathar (2013). "Circumscribed Regular Polygons". arΧiv :1301.6293 [math.MG].
^ a b Steven Finch (2014). Errata and Addenda to Mathematical Constants (PDF) . Harvard.edu. hlm. 53. Diarsipkan dari versi asli (PDF) tanggal 2016-03-16. Diakses tanggal 2013-12-17 .
^ a b J. B. Friedlander; A. Perelli; C. Viola; D.R. Heath-Brown; H.Iwaniec; J. Kaczorowski (2002). Analytic Number Theory . Springer. hlm. 29. ISBN 978-3-540-36363-7 .
^ a b Horst Alzer (2002). "Journal of Computational and Applied Mathematics, Volume 139, Issue 2" (PDF) . Journal of Computational and Applied Mathematics . 139 (2): 215–230. doi :10.1016/S0377-0427(01)00426-5 .
^ a b Steven R. Finch (2003). Mathematical Constants . Cambridge University Press. hlm. 238 . ISBN 978-3-540-67695-9 .
^ a b c d Steven Finch (2005). Class Number Theory (PDF) . Harvard University. hlm. 8. Diarsipkan dari versi asli (PDF) tanggal 2016-04-19. Diakses tanggal 2014-04-15 .
^ a b Yann Bugeaud (2012). Distribution Modulo One and Diophantine Approximation . Cambridge University Press. hlm. 87. ISBN 978-0-521-11169-0 .
^ a b Eric W. Weisstein (2002). CRC Concise Encyclopedia of Mathematics (edisi ke-Second). CRC Press. hlm. 1356. ISBN 978-1-58488-347-0 .
^ a b Richard E. Crandall; Carl B. Pomerance (2005). Prime Numbers: A Computational Perspective . Springer. hlm. 80. ISBN 978-0387-25282-7 .
^ a b Pascal Sebah; Xavier Gourdon (2002). Introduction to twin primes and Brun's constant computation (PDF) .
^ a b Bruce C. Berndt; Robert Alexander Rankin (2001). Ramanujan: essays and surveys . American Mathematical Society, London Mathematical Society. hlm. 219. ISBN 978-0-8218-2624-9 .
Situs MathWorld Wolfram.com
^ (Inggris) Weisstein, Eric W. "Pi Formulas" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Pythagoras's Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Theodorus's Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Golden Ratio" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Delian Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Wallis's Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "e" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Natural Logarithm of 2" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Sophomore's Dream" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Lemniscate Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Euler–Mascheroni Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Erdos-Borwein Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Laplace Limit" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Gauss's Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Soldner's Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Soldner's Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Hermite Constants" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Liouville's Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Ramanujan Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Catalan's Constant" . MathWorld .
^ a b (Inggris) Weisstein, Eric W. "Dottie Number" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Mertens Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Weierstrass Constant" . MathWorld .
^ a b (Inggris) Weisstein, Eric W. "Relatively Prime" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Cahen's Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Universal Parabolic Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Apéry's Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Gelfonds Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Favard Constants" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Golden Angle" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Sierpinski Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Nielsen-Ramanujan Constants" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Mandelbrot Set" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Gieseking's Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Bernstein's Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Twin Primes Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Plastic Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Landau Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Golomb-Dickman Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Feller-Tornier Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Champernowne Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Gelfond-Schneider Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Khinchin's Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Levy Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Levy Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Mills Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Gompertz Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Lochs' Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Liebs Square Ice Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Niven's Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Porter's Constant" . MathWorld .
^ a b (Inggris) Weisstein, Eric W. "Feigenbaum Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Chaitin's Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Fransen-Robinson Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Robbins Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Cantor Set" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Self-Avoiding Walk Connective Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Salem Constants" . MathWorld .
^ a b (Inggris) Weisstein, Eric W. "Chebyshev Constants" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Conway's Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Reciprocal Fibonacci Constant" . MathWorld .
^ a b (Inggris) Weisstein, Eric W. "Brun's Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Hafner-Sarnak-McCurley Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Apollonian Gasket" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Backhouse's Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Random Fibonacci Sequence" . MathWorld .
^ (Inggris) Weisstein, Eric W. "e" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Komornik-Loreti Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Paper Folding Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Artin's Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "MRB Constant" . MathWorld .
^ a b (Inggris) Weisstein, Eric W. "SomossQuadraticRecurrence Constant" . MathWorld .
^ a b (Inggris) Weisstein, Eric W. "Foias Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Log Gamma Function" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Polygon Inscribing" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Thue-Morse Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Heath-Brown-Moroz Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Daftar tetapan matematis" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Du Bois Reymond Constants" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Stephen's Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Euler Product" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Copeland-Erdos Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Pascal's Triangle" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Landau-Ramanujan Constant" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Prince Rupert's Cube" . MathWorld .
^ (Inggris) Weisstein, Eric W. "Glaisher-Kinkelin Constant" . MathWorld .
Situs OEIS.com
Situs OEIS Wiki
Daftar pustaka
Arndt, Jörg; Haenel, Christoph (2006). Pi Unleashed . Springer-Verlag. ISBN 978-3-540-66572-4 . Diakses tanggal 2013-06-05 . English translation by Catriona and David Lischka.
Jensen, Johan Ludwig William Valdemar (1895), "Note numéro 245. Deuxième réponse. Remarques relatives aux réponses du MM. Franel et Kluyver", L'Intermédiaire des Mathématiciens , II : 346–347
Pranala luar
Templat:MathematicalSymbolsNotationLanguage