Artikel ini tidak memiliki bagian pembuka yang sesuai dengan standar Wikipedia. Mohon tulis paragraf pembuka yang informatif sehingga pembaca dapat memahami maksud dari "Barisan polinomial". Contoh paragraf pembuka "Barisan polinomial adalah ...".(Juni 2010) (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini)
Beberapa peristiwa dapat memberikan data yang menggambarkan keberadaan barisan ini, misalnya data banyaknya jabat tangan yang terjadi pada sekelompok orang. Jumlah orang dalam kelompok sebagai urutan suku dan jumlah jabatan tangan dari mereka adalah nilai sukunya. Sehingga dapat dinyatakan dalam bentuk:
Jika ada 1 orang dalam kelompok maka tidak ada jabatan tangan
Jika ada 2 orang dalam kelompok maka hanya ada 1 jabatan tangan
Jika ada 3 orang dalam kelompok maka ada 3 jabatan tangan
Jika ada 4 orang dalam kelompok maka ada 6 jabatan tangan
dan seterusnya
Rangkaian bilangan di atas dapat dinyatakan dalam bentuk barisan: 0, 1, 3, 6, ... . Tentu akan menyulitkan kita jika ingin melihat jumlah jabatan tangan pada kelompok yang anggotanya 201 orang. Untuk itu sering kali kita berusaha mencari bentuk umum dari barisan tersebut, dan benar bahwa pada barisan tersebut apabila jumlah n orang dalam kelompok secara umum terdapat atau jabatan tangan yang menunjukkan barisan tersebut berupa barisan polinom.
Proses pencarian kemungkinan bentuk umum peristiwa di atas sering dipakai konsep kombinasi, tetapi ternyata prinsip-prinsip keistimewaan barisan polinom dengan menggunakan operasi aritmetika sederhana dari operasi pengurangan, penjumlahan, perkalian dan pembagian, juga dapat dimanfaatkan.
Membuat Barisan Polinom
Jika f sebuah fungsi polinom variabel tunggal maka barisan polinom yang dibangun dari fungsi f tersebut dapat dinyatakan dalam bentuk,
f(1), f(2), f(3), ...., f(n), ....
mempunyai arti:
suku ke 1 = U1 = f(1)
suku ke 2 = U2 = f(2)
suku ke 3 = U3 = f(3)
.......................
suku ke n = Un = f(n)
Barisan bilangan 0, 1, 3, 6, ... dapat diartikan, U1 = 0, U2 = 1, U3 = 3, U4 = 6, ...., atau barisan tersebut dibangkitkan oleh fungsi polinom berupa fungsi berderajat 2
Derajat polinom adalah pangkat tertinggi dari variabel fungsi polinom.
Untuk i, ai berupa bilangan cacah,
maka fungsi f(n) mempunyai derajat i pada suku polinom aini
Menggali Keistimewaan Barisan Polinom
Dalam menggali keistimewaan barisan polinom kita mencoba membentuk beberapa pengertian sebagai jembatan untuk memperoleh beberapa keistimewaan tersebut.
Keistimewaan Barisan Polinom
Pada akhir penggalian keistimewaan barisan polinom dapat dengan mudah kita simpulkan adanya beberapa peculiar barisan polinom[1] tersebut yaitu:
Barisan selisih suku ke derajad polinom yang dibentuk akan berupa barisan C.
Besar konstanta adalah ai!,bow down beaches
risan yang diketahui beberapa suku pertamanya. Langkah-langkah untuk mencari kemungkinan bentuk umum barisan tersebut salah satunya adalah:
Jika barisan tersebut (anggap barisan utama) adalah barisan konstanta atau dapat dianggap konstanta maka lanjutkan ke langkah terakhir.
Buat barisan selisih suku terus menerus sampai menghasilkan barisan konstanta atau dapat dianggap konstanta.
Hitung jumlah barisan selisih suku (misal ada q barisan), dan salah satu suku konstanta yang dihasilkan adalah p, maka dimungkinkan barisan utama tersebut mengandung komponen polinom: .
Hapus komponen polinom yang diperoleh dari langkah ke 3 dari barisan utama dengan mengurangi masing-masing suku barisan utama dengan nilai masing-masing suku komponen polinom yang diperoleh di langkah 3. Kemudian ulangi dari langkah 1 dengan barisan utama yang baru (setelah dihilangkan komponen polinom yang diperoleh dari langkah 3).
Kemungkinan rumus umum barisan yang kita cari adalah jumlah semua komponen yang diperoleh di langkah ke 3 ditambah salah satu suku barisan konstanta paling akhir (barisan utama baru terakhir).
Dalam kehidupan sering kali kita berusaha melihat keteraturan menjadi jelas dan dapat diprediksi. Data keteraturan yang dapat dinyatakan dengan bilangan dalam interval yang sama dengan kurun waktu tertentu akan membentuk sebuah barisan.
Barisan tersebut selalu mempunyai multi penafsiran untuk data-data yang belum terlampaui. Untuk menentukan kemungkinan pola keteraturan data tersebut sebagai alternatif prediksi dapat digunakan algoritme di atas.
Melalui algoritme ini dapat dengan banyak cara untuk mencari kemungkinan aturan suku suatu barisan, diantaranya
Menambah pada beberapa suku berikutnya
Misalnya ada barisan bilangan 2, 4, 6, .... maka kita dapat menentukan kemungkinan rumus umum barisan dengan tiga suku tersebut menggunakan algoritme.
Untuk mendapatkan kemungkinan yang lain kita dapat menambahkan beberapa suku berikutnya menggunakan bilangan yang kita kehendaki, misalnya untuk barisan tersebut dapat kita jadikan 2, 4, 6, 10, .... atau 2, 4, 6, 4, 2, .... dan masih banyak lagi.
Menyisipkan bentuk rumus umum yang diharapkan
Metode ini memungkinkan kita menyisipkan sembarang suku yang kita kehendaki.
Misal pada barisan bilangan 2, 4, 6, ..., jika kita menghendaki pada rumus umumnya terdapat suku n.sin(90n0) mak kita dapat mengambil bagian tersebut dari barisan 2, 4, 6, ..., sehingga muncul barisan 2-1.sin(900), 4-2.sin(1800), 6-3.sin(2700), .... atau barisan bilangan 1, 4, 3, .....
Barisan 1, 4, 3, ... kita cari kemungkinannya menggunakan algoritme dan hasilnya dijumlahkan dengan n.sin(90n0).
Memecah masing-masing suku dengan aturan yang dikehendaki
Metode ini memecah masing masing suku dengan aturan yang sama, kemudian masing-masing pecahan suku kita buat barisan yang hasilnya kita gabung sesuai aturan pemecahan yang telah kita gunakan.
Misal 2, 4, 6, .... dapat kita pecah menjadi 1x2, 2x2, 2x3, ... sehingga muncul dua barisan yaitu 1, 2, 2, ... dan 2, 2, 3, .... Jika barisan pertama mempunyai rumus Un1 dan barisan kedua memunyai rumus Un2 maka rumus barisan 2, 4, 6, ... kemungkinan adalah Un = Un1.Un2
Keistimewaan yang telah ditunjukkan barisan polinom yang selalu
memberikan barisan selisih suku ke derajatnya berupa barisan konstanta
maka barisan selisih suku berikutnya adalah barisan 0 (nol).
Mengacu pada pengertian tersebut maka dengan meneliti perilaku barisan
selisih suku disaat tanpa barisan polinom, kemungkinan akan mendapatkan
keteraturan, sehingga memungkinkan membentukan algoritme
berlandaskan keteraturan tersebut.
Dalam makalah seminar Menentukan Rumus Umum Barisan Polinom terdapat contoh algoritme untuk menyertakan sebuah suku eksponen dalam barisan polinom sebagai berikut:
Jika barisan tersebut (anggap barisan utama) adalah barisan konstanta atau dapat dianggap konstanta maka lanjutkan ke langkah terakhir.
Buat barisan selisih suku terus menerus sampai menghasilkan barisan dengan rasio sukunya sama atau rasio sukunya dapat dianggap sama.
Hitung jumlah barisan selisih suku (misal ada q barisan), dan nilai suku awal barisan selisih paling akhir adalah p, maka dimungkinkan barisan utama tersebut mengandung komponen suku eksponen:
Hapus komponen eksponen yang diperoleh dari langkah ke 3 dari barisan utama dengan mengurangi masing-masing suku barisan utama dengan nilai masing-masing suku komponen polinom yang diperoleh di langkah 3.
Jika barisan tersebut (anggap barisan utama) adalah barisan konstanta atau dapat dianggap konstanta maka lanjutkan ke langkah terakhir.
Buat barisan selisih suku terus menerus sampai menghasilkan barisan konstanta atau dapat dianggap konstanta.
Hitung jumlah barisan selisih suku (misal ada q barisan), dan salah satu suku konstanta yang dihasilkan adalah p, maka dimungkinkan barisan utama tersebut mengandung komponen polinom: .
Hapus komponen polinom yang diperoleh dari langkah ke 7 dari barisan utama dengan mengurangi masing-masing suku barisan utama dengan nilai masing-masing suku komponen polinom yang diperoleh di langkah 7. Kemudian ulangi dari langkah 5 dengan barisan utama yang baru (setelah dihilangkan komponen polinom yang diperoleh dari langkah 7).
Kemungkinan rumus umum barisan yang kita cari adalah jumlah semua komponen yang diperoleh di langkah ke 3, dan 7, serta ditambah salah satu suku barisan konstanta paling akhir (barisan utama baru terakhir).
Misalnya kita mencari kemungkinan rumus umum barisan 2, 7, 24, 77, 238, ...
2, 7, 24, 77, 238, .... bukan barisan konstanta maka,
7-2,24-7,77-24,238-77, ... atau 5, 17, 53, 161, .... barisan selisih suku ke 1
17-5,53-17,161-53, ... atau 12, 36, 108, ... barisan selisih ke 2 kita anggap barisan mempunyai:
ada 2 barisan selisih suku dengan rasio 3 maka kemungkinan mengandung komponen .
Barisan 3n adalah 3, 9, 27, 81, 243, ... kita hilangkan dari 2, 7, 24, 77, 238 ... akan menghasilkan barisan 2-3,7-9,24-27,238-234,... atau -1, -2, -3, -4, ...
-1, -2, -3, -4, .... bukan barisan konstanta maka,
-2+1,-3+2,-4+3, ... atau -1, -1, -1, .... barisan selisih suku ke 1 berupa barisan konstanta
ada 1 barisan selisih suku maka barisan utama mengandung komponen .
Barisan -n adalah -1, -2, -3, -4, ... hilangkan dari -1, -2, -3, -4, ... hasilnya barisan -1+1,-2+2-3+3,-4+4,... atau 0, 0, 0, 0, ...
0, 0, 0, 0, .... adalah barisan konstanta.
Kemungkinan rumus umum barisan 2, 7, 24, 77, 238, ... adalah .
Melihat contoh di atas maka persoalan Deret aritmetika dan Deret ukur atau Deret Geometri memungkinkan juga dapat diselesikan menggunakan algoritme terakhir.