基本的局部二值模式算子的最大缺陷在于它只覆盖了一个固定半径范围内的小区域,这显然不能满足不同尺寸和频率纹理的需要。为了适应不同尺度的纹理特征,并达到灰度和旋转不变性的要求,Ojala等对局部二值模式算子进行了改进,将3×3邻域扩展到任意邻域,并用圆形邻域代替了正方形邻域,改进后的局部二值模式算子允许在半径为 R 的圆形邻域内有任意多个像素点。从而得到了诸如半径为R的圆形区域内含有P个采样点的局部二值模式算子。
^T. Ojala, M. Pietikäinen, and D. Harwood (1994), "Performance evaluation of texture measures with classification based on Kullback discrimination of distributions", Proceedings of the 12th IAPR International Conference on Pattern Recognition (ICPR 1994), vol. 1, pp. 582 - 585.
^T. Ojala, M. Pietikäinen, and D. Harwood (1996), "A Comparative Study of Texture Measures with Classification Based on Feature Distributions", Pattern Recognition, vol. 29, pp. 51-59.
^"An HOG-LBP Human Detector with Partial Occlusion Handling", Xiaoyu Wang, Tony X. Han, Shuicheng Yan, ICCV 2009
^ M. Heikkilä, M. Pietikäinen, "A texture-based method for modeling the background and detecting moving objects", IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4):657-662, 2006.
^Ojala, T., Pietikäinen, M. and Mäenpää, T. (2002), Multiresolution Gray-scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. Pattern Analysis and Machine Intelligence 24(7): 971-987.